This site uses cookies to store information on your computer. Some of these cookies are essential to make this site work and others help us to gain insight into how it is being used.
These cookies are set when you submit a form, login or interact with the site by doing something that goes beyond clicking some simple links. We also use some non-essential cookies to anonymously track visitors or enhance your experience of this site. If you're not happy with this, we won't set these cookies but some nice features on the site may be unavailable. To control third party cookies, you can also adjust your browser settings. If you wish to view any policies or terms of usage that you cannot find on this website, please contact us. You can change your mind and opt-out at any time by clicking the ✻ icon above.
I consent to cookies
I don't consent to cookies
Armms RF and Microwave Society
Book for the Nov 2019 conference »


Monday 18th November to Tuesday 19th November 2019 at Wyboston Lakes, Wyboston


Young Engineer Sponsorship: The ARMMS RF & Microwave Society provides sponsorship for young engineers (28 or below) who have had papers accepted for presentation at each meeting. Sponsorship is £200 cash plus free attendance (including conference dinner and overnight accommodation). Potential candidates should identify themselves as eligible at time of submission and state their date of birth. This offer is limited to a maximum of 2 places per meeting.

Best Paper Award: The Steve Evans-Pughe prize is awarded to the best presenter at each meeting. The award is £200 for the best paper and £50 for the runner-up. The prize is sponsored by NI.

If you are interested in submitting a paper for presentation at this conference, please contact the technical coordinator (details below). Papers currently listed below are those already accepted. The deadline for submissions is September 20th. For exhibition enquiries please email, for all other enquiries please email


Wyboston Lakes
Great North Road
MK44 3AL



David Morris

Tel+44 7768 556234


24GHz FMCW Radar With Virtual Antenna. Basic Theory and Real-World Measurements

Mike Roberts
Slipstream Design

As millimetrewave radar continues to be used more and more in our every day lives, this paper reviews the principles behind FMCW radar, RF hardware and associated 2D FFT doppler, range and angle processing.  We take a look at how virtual antenna are formed by precise physical layout and additional processing.  A 24GHz evaluation radar from Analog Devices is used to take measurements of various real-world targets with synchronised video to show the target scene.  A plated 3D printed corner reflector is also used to generate a target of known area to provide practical evaluation of achievable range resolution.

An SMT Packaged 4-Channel mm-Wave PA for 5G Applications

Mohammed Tahir, Stuart Glynn, Liam Devlin, Andy Dearn, Graham Pearson
Plextek RFI

5G mobile devices operating at mmWave will incorporate electronic beam steering to address the difficulties of non-line of sight communications at these high frequencies. This requires the use of multiple parallel receive and transmit channels, which must be implemented in a low cost, compact manner. This presentation will describe the design of a 4-channel PA covering the 27.5 to 28.35GHz 5G band. It was realised as a single chip component on the 0.15µm E-mode GaAs PHEMT process of Sanan IC and is packaged in a standard over-moulded, 5mm x 5mm plastic QFN package. This results in a low cost, SMT compatible component suitable for incorporation into high volume commercial products. Each PA exhibits a gain of 20dB with an RF output power of 24.5dBm at 1dB gain compression with a PAE of 20%. When operated at 7dB back-off to preserve modulation fidelity the third order intercept point is 31dBm

Artificial Intelligence design of microwave antennas with case studies

Moyablode Olusola Akinsolu
Gwyndwr University

Calibration techniques for on-wafer S-parameter measurements

Xiaobang Shang and Jian Ding
NPL and Filtronic

Accurate characterisation of S-parameters (scattering parameters) at chip level is of great importance to the development of next generation electronic devices. Such measurements are usually carried out on a Vector Network Analyzer (VNA), subject to an on-wafer calibration. Calibration techniques play a key role in determining the accuracy of on-wafer measurements. This presentation is intended to provide an overview of conventional calibration techniques, including TRL (Thru, Reflect, Line), Multi-Line TRL, and SOLT (Short, Open, Load, Thru), etc. New SOLT calibration method (using a 10-term error model), developed by NPL, will also be reported. Advantages and limitations of these different calibration techniques will be discussed and summarised. Additionally, this presentation will give an insight into other important factors, related to on-wafer measurements at millimetre-wave frequencies. These factors include design of calibration standards, repeatability of on-wafer measurements, impact from testing environment, etc.

Development of a Spherical Near Field Measurement System for Phased Array Antenna?s

Dipendra Mistry
Phasor Solutions

Near-Field measurement of antennas has gained popularity over the last few decades. This is due to its ability to provide excellent measurement accuracy in controlled lab conditions, without the complexities of testing in an outdoor range. A common application for this technique is the calibration and measurement of phased array antennas in the far-field. After array calibration the phased array antenna will beam-form a radiation pattern in the desired given direction across a range of operating conditions.

Development of an Analogue Phased Array Beamformer for Wide Ku/K Band Applications

Ben Kieniewicz
European Engineering and Consultancy Ltd

This paper presents the design and measurement of a wide 16-22 GHz scalable multi-beam phased array analogue beam former. As the current trend of new chipsets which contain ever more RF circuitry continues, the techniques and principles required to use them also become more challenging. This paper looks at the design criteria required to pack huge amounts of RF circuits together and ensure compliance to beam former theory. The use of automated test and measurement is discussed and how the calibration challenges of such a system can be overcome. The paper uses results and experience which came from the development of EECLs scalable multi-beam, 16/64/256 antenna array.

Direct S-Band Communication Using Xilinx's RFSoC and Design-In of its Microwave Interfaces

Rajan Bedi

"Xilinx's RFSoC is a single-chip solution combining RF ADCs and DACs with a 16 nm, Zynq UltraScale+ MPSoC capable of implementing a complete software-defined radio including direct IF/RF sampling at the receiver and direct IF/RF re-construction at the transmitter.

12-bit, 4 GHz ADCs are available capable of sampling up to 2.058/4 GSPS allowing direct digitisation of UHF, L and S-band carriers within this input bandwidth, as well as 14-bit, 4 GHz DACs sampling up to 6.554 GSPS allowing reconstruction of IF/RF signals and direct up-conversion to the second Nyquist zone within this output bandwidth.

Portable, ground terminals for satellite communication and M2M applications are baselining RFSoC because it offers the potential to produce small, low-power, highly-integrated transceivers. Many companies struggle with designing the analogue, microwave interfaces before and after theRF ADCs and DACs respectively. Broadband impedance matching, passive or active, single-ended or differential circuitry before and after the mixed-signal convertors, as well as RF simulation and synthesis, are key challenges for today's digital-centric engineers."

Microwave S-parameter calibration techniques and their uncertainty

Dilbagh Singh

This paper discusses techniques for calibrating vector S-parameter network analysers and uncertainties associated with the measurements due to the calibration techniques.  The paper discusses different calibration methods and their typical applications and then a number of devices are measured using the same equipment, calibrated with different methods and the measured results are presented.  The investigation has been carried out over 100 MHz and 26 GHz, which covers many of today’s RF/Microwave applications.  Six different types of calibrations have been investigated on a number of one-port and two-port devices.  The measured uncertainty is also compared to the UK’s Primary Impedance Microwave Measurement System.

Millimeter-Wave Beamformer Chips with Smart-Antennas for 5G: Toward Holistic RFSOI Technology Solutions including RF-ADCs

Sidina Wane
eV Technologies

This paper presents RFIC MIMO modules integrating beamformer chips (including PAs, LNAs, T/R switches, power combiners/dividers and digital controls) and smart-antenna arrays including down-converters for 5G. Several solutions: 2x2 (16 antennas) and 4x4 (64 antennas) arrays of RFIC beamformer chips are designed, fabricated and experimentally characterized. Wireless 5G links with real-time high data rate video-streaming capabilities are demonstrated using integrated cameras. Field-Field correlation-based over-the-air near-field and far-field test solutions with and without down-conversion are proposed for MIMO/Massive-MIMO phased-array systems both in frequency and time domains. Cognitive BIST solutions are combined with co-array signal-processing. Perspectives for holistic RFSOI technology solutions, including RF-analog-to-digital converters (RF-ADCs) and adaptive body-biasing systems, are drawn in comparison with BiCMOS, GaAs and GaN based technologies.

Multi-port Amplifier fed Linear Array

Peter James

The object of this paper is to describe the  possibility of feeding a linear array with a pair of MPAs, so that a variable amplitude taper can be applied to the array.  This may be achieved by switching edge elements off completely or giving them relatively low amplitude, whilst at the same time using all the amplifiers at or near their maximum. Hence the array may be used most efficiently. The aim of this paper is to show that a pair of 8x8 MPAs may feed a linear array. It will also present some predictions of the radiation patterns.

Provision of UK GaN MMIC capability for X-band applications

Matthew Okeefe


Companies booking two or more delegate places are able to take part in the commercial exhibition that accompanies the conference. Please note: there is a maximum of 20 exhibition tables at each meeting, these are offered on a first come basis. Booking two delegate places does not guarantee an exhibition space, please email to check availability and reserve and exhibition space.


The society would like to thank RFMW and Qorvo for sponsoring the November 2019 meeting:


Contributions are invited with an emphasis on RF and microwave design, research, testing and associated subjects. An oral presentation will be made at the meeting and a written paper will be required for publication in the society digest, which is distributed to delegates at the meeting. Prospective speakers are requested to submit a title and a short abstract to the technical coordinator (see above) as soon as possible.

Click here to view our Guidelines for Authors
Click here to view our Publication Release Form

Receive future programme details