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Abstract—With the advent of artificial intelligence (AI), the
design of microwave devices such as antennas has been expedited
in terms of throughput and time-to-market. This is chiefly
because design automation via optimization has replaced the use
of time intensive manual design techniques which premise on trial
and error without any guarantee of successful outcomes. For the
rapid design of antennas via optimization, surrogate model-based
optimization (SMBO) methods tend to be at the forefront due
to their efficiency improvement in terms of computational cost.
The surrogate model assisted differential evolution for antenna
synthesis (SADEA) algorithm family are a class of state-of-the-
art SMBO methods. In this paper, the use and advantages of
the SADEA algorithm family is demonstrated using two cases of
real-world antenna design problems as examples. The antenna
design problems are the optimization of: a multi-layered compact
multiple-input and the multiple-output (MIMO) antenna array
for wireless communications and a microwave imaging antenna
for ultra wide band (UWB) body-centric applications. For both
examples, the SADEA algorithm family obtained very good
design solutions within an affordable time and the quality of the
obtained solutions are validated by the close agreement which ex-
its between the simulated and measured results of the fabricated
and ready-to-use prototypes of the antennas. For both cases, the
performance of the SADEA algorithm family is compared with
2019 Computer Simulation Technology - Microwave Studio (CST-
MWS) optimizers (trust region framework (TRF) and particle
swarm optimisation (PSO)). Results from the comparisons show
that the SADEA algorithm family obtains very satisfactory design
solutions in all runs using an affordable optimization time in
each, whereas the alternative optimizers failed in all runs by not
meeting the design requirements and/or generating designs with
geometric incongruities.

Index Terms—Antenna optimization; Artificial intelligence;
Evolutionary methods; PSADEA; SADEA; SADEA-II; Surrogate
model-based optimization.

I. INTRODUCTION

Artificial intelligence (AI) continues to play a very signif-
icant role in microwave engineering. In the last few decades,
the design and development of microwave devices such as
antennas has been efficiently expedited using state-of-the-art
machine learning and computational techniques which are built
on AI paradigms [1]–[4]. Conventionally, microwave devices
(antennas in particular) can be designed by following rules
of thumb which are often validated using design experience
[4], [5]. Whilst these rules adequately serve as practical
guide for antenna designers and engineers, their judicious
use and application often lead to sub-optimal antenna designs

[4], [5]. This is typically the case when the design criteria
and performance specifications are very stringent and highly
reliant on the geometric profiles and/or material composition
of the antennas [4]. Therefore, antenna designers and engineers
are in the practice of tuning the parameters of sub-optimal
antenna designs generated by manual techniques for better
performance. This process is highly laborious and there is no
guarantee of successful outcomes as it is often based on trial
and error. To address the above challenges, antenna design
automation via optimization must be carried out to generate
near-optimal antenna designs and structures.

Local optimization and global optimization are the two
fundamental ways of carrying out antenna optimization. For
local optimization methods, a very good initial design, which
is seldom available in practice, is required to obtain good or
reasonably acceptable design solutions. Consequently, global
optimization methods are more attractive due to their robust-
ness and optimization capacity, not requiring an initial design.
AI techniques such as evolutionary computation have chiefly
informed the development of global optimization methods,
in particular evolutionary algorithms (EAs). EAs such as
differential evolution (DE) [6] and particle swarm optimisation
(PSO) [7] tend to be at the forefront of widely used global
optimization methods for antenna synthesis. However, global
optimization methods such as EAs often require a large
number a large number of full-wave electromagnetic (EM)
simulations to obtain good or reasonably acceptable design
solutions [8].

For antennas to be accurately characterized for performance
estimation and evaluation, numerical technique-based EM sim-
ulations (e.g., time domain analysis using the finite integration
technique (FIT)) which are computationally expensive are
required [5], [9]. As a result, the optimization time becomes
excessively long (or even prohibitive in some cases) when EAs
are used to synthesize antennas [4]. To address the challenge
of long optimization time, efficiency improvement methods
which can adequately lower the overall computation cost of
the optimization without much compromise on the quality of
the design solutions generated by the optimization procedure
are required. Surrogate model-based optimization (SMBO) is a
very promising optimization efficiency improvement method.
AI techniques including machine learning and statistical mod-
elling are the primary features of SMBO.

By means of machine learning and statistical modelling,
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SMBO methods build and employ surrogate models which
are cheap approximation models of the exact evaluations to
replace computationally expensive exact function evaluations
(e.g., EM simulations). Surrogate model-assisted evolutionary
algorithms (SAEAs) are built when EAs are used as the search
engine in SMBO methods [10], [11]. There exists a vital
trade-off between the quality of the surrogate model and the
efficiency (premised on the essential number of exact evalua-
tions) in SAEAs. Thus, a surrogate model management method
is required to find an appropriate trade-off in SAEAs. Due
to a multiplicity of surrogate model management procedures,
there are various kinds of SAEAs. The surrogate model-aware
evolutionary search (SMAS) framework is a state-of-the-art
SAEA framework and its efficiency and optimization quality
are well established and verified [10]–[13].

The surrogate model assisted differential evolution for an-
tenna synthesis (SADEA) algorithm family are a class of
SMAS-based SAEAs purpose-built for antenna design syn-
thesis [14]–[16]. They offer 3 to 20 times speed improve-
ment compared to global optimization methods and they have
been widely applied to several challenging real-world design
problems. The main recurring features across all the SADEA
generations in the SADEA algorithm family are DE global
search and Gaussian process (GP) surrogate modelling. The
first generation SADEA [14], [17], [18], called SADEA-I in
this paper is suitable for antenna design problems of around
10 up to 30 dimensions, while the second generation SADEA
[17], called SADEA-II in this paper is suitable for the efficient
synthesis of computationally expensive multi-fidelity antennas
with the same dimensionality limit as SADEA-I.

The state-of-the-art in the SADEA algorithm is the third
generation SADEA, parallel surrogate model assisted hybrid
differential evolution for antenna optimisation [16], [19],
called SADEA-III in this paper. SADEA-III is developed
for use in parallel computing environments where multiple
candidate designs can be simulated concurrently using dis-
tributed processors and shared memory on multicore operating
systems. SADEA-III employs multiple DE mutation strategies
and reinforcement learning techniques to achieve an added 1.5
to 3 times efficiency improvement and higher design solution
quality even in the sequential mode compared to the previous
generations of SADEA [16], [19].

The primary goal of this paper is to demonstrate the use and
advantages of the SADEA algorithm family as an industry-
standard for the efficient AI-driven design of microwave
antennas using real-world antenna design problem case studies
as examples. All examples considered are finished and ready-
to-use industry standard antenna products and the optimization
capacity of the SADEA algorithm family is compared to
widely used and commercially available antenna optimizers.
The remainder of the paper is organized as follows: Section II
provides the generic framework of the SADEA algorithm fam-
ily and highlights the distinctions across all the generations.
Section III presents the performance of the SADEA algorithm
family using two real-world industry standard antennas and
comparisons between the performance of the SADEA algo-
rithm family and 2019 CST-MWS optimizers are made. The
concluding remarks are given in Section IV.

II. SADEA ALGORITHM FAMILY FRAMEWORK

As mentioned above, the key elements in the framework
of the SADEA algorithm family across all generations are
Gaussian process (GP) surrogate modelling and differential
evolution (DE) global search [16], [19]. Given a set of ob-
servations, GP predicts the function value at a design point
by modelling the function as a Gaussian distributed stochastic
variable with a known mean and variance. The mean squared
error (MSE) of the prediction uncertainty is then deduced and
the lower confidence bound method is used to evaluate the
quality of a candidate design with respect to the predicted
value. More details on how GP machine learning is adopted
across all generations can be found in [14], [14], [16], [19].
The DE search engine in all SADEA generations follows
the standard convention of generating child solutions for
donor vectors via mutation and crossover operations in the
optimization process. More details on how the DE algorithm
works can be found in [6].

Generically, the SADEA algorithm family adopt the follow-
ing basic steps in their modus operandi:

Step 1: Sample a small number of designs from the design
space using the Latin Hypercube sampling (LHS)
method [20] and perform EM simulations on these
designs to build the initial database.

Step 2: If a preset stopping condition (e.g. the maximum
number of EM simulations) is met, output the best
design from the database; otherwise go to Step 3.

Step 3: Select a number of best designs from the database
to create a population.

Step 4: Apply DE operators on the population in Step 3 to
produce child populations and their respective child
solutions.

Step 5: For each candidate design in each population,
build a GP (Gaussian process) model using training
data points created from the nearest designs based
on Euclidean distance from the database and their
performance values.

Step 6: Use the GP (Gaussian process) models in Step 5
and the lower confidence bound (LCB) prescreening
method [21] to prescreen the child solution(s) gener-
ated in Step 4. Select the top-ranked child solution(s)
according to the LCB values.

Step 7: Evaluate the estimated top-ranked child solution(s)
from Step 6 by simulating them. Add them and their
performances (via simulation) to the database. Go
back to Step 2.

The main distinctions across the generations of the SADEA
algorithm family are summarized as follows: (1) In SADEA-
I, only the DE/best/1 mutation operator is applied at Step 4
and in steps 6 and 7 only one child solution is considered
[14], [17], [18]. (2) In SADEA-II, a three-stage optimization
involving Steps 1 to 7 (as in SADEA-I) using a coarse model
at the first stage, data mining at the second stage and steps 1
to 7 (as in SADEA-I, but enhanced by a local search using
the best design from stage 1 as the starting point) using fine
model at the last stage is carried out [15]. (3) In SADEA-III, a
self-adaptive DE/best/1, DE/current-to-best/1 and DE/rand/2-
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based search is involved at Step 4 and as a result three child
solutions are considered in steps 6 and 7 [16], [19]. SADEA-
III is the direct augmentation of SADEA-I because both follow
the same procedural routines and both can be applied to similar
antenna design problems.

III. CASE STUDIES

Using two real-world antennas, the use and advantages
of the SADEA algorithm family are demonstrated in this
section. The example antennas for the case studies are a multi-
layered compact MIMO antenna array for wireless applica-
tions and a microwave imaging antenna for UWB body-centric
applications. More case studies (including the optimization
of: a base station antenna for 5G applications, a highly
compact crossed-dipole antenna for global navigation satellite
system (GNSS) applications and a dual-band circularly po-
larized elliptical patch antenna for global positioning system
(GPS) and Iridium applications) showing the optimization
capacity of the SADEA algorithm family are available at:
https://ai-dac.com/antenna-design-gallery/. The time consump-
tion reported in the case studies is wall clock time.

 

Figure 1. A cross section of the layout of the multilayered compact MIMO
antenna array (example 1).

A. Example 1: Multilayered Compact MIMO (Multiple-Input
and Multiple-Output) Antenna Array

The first example is the 8-variable two-port (reconfigurable)
compact MIMO antenna array for wireless applications [22].
It is implemented on a stacked multi-layered structure which
mainly consists of six dielectric substrate layers, a ground
plane, eight parasitic patches and a driven radiator. The
antenna configuration borrows some ideas from [23] and
a cross section of its layout is shown in Fig. 1. Four of
the antenna’s parasitic patches are implemented on the first
substrate, the driven radiator is implemented on the second
substrate, the ground plane is interposed between the third
and fourth substrates, the second feed line is implemented on

Table I
SEARCH RANGES OF THE DESIGN VARIABLES AND THE OPTIMAL DESIGN

BY SADEA-I (ALL SIZES IN MM) (EXAMPLE 1)

No V ariables Lower
bound

Upper
bound

SADEA-I
Optimum

1 Length of the driven
patch (Ld) 12 18 17.39

2
Uniform length of the
parasitic patches (Lp) 10 20 16.44

3 Width of the driven
patch (Wd) 12 18 14.55

4
Uniform width of the
parasitic patches (Wp) 10 20 15.60

5
Uniform gap between
the four parasitic patches
(Gp)

12 40 19.19

6 Microstrip line length
(Ml)

-9 9 -8.70

7
Relative position of feed
coupling (Fp) 0.25 30 3.02

8 Uniform edge tapering
of all patches (Et) 0.5 10 3.93

9 (Lp + 2−Gp)≤ 0

10 {Gp − 2× min([30-Lp

2
-5, 30 - Wp

2
− 5])} ≤ 0

11 {-Ld
2

+ abs(Ml)}≤ 0

12 {Et −min(
[
Ld
2
, Wd

2
,
Lp

2
,
Wp

2

]
)}≤ 0

the fifth substrate and the remaining four parasitic patches are
implemented on the sixth dielectric substrate.

The first, third, fourth and sixth substrate layers are made
of RO4003C laminate which has a thickness of 3.048 mm,
relative permittivity (εr) of 3.38 and a dielectric loss tangent
(tan(δ)) of 0.0027, while the second and fifth substrate layers
are made of RT/duroid 6006 laminate which has a thickness of
1.9 mm thick, relative permittivity (εr) of 6.17 and dielectric
loss tangent (tan(δ)) of 0.0025. The two feeding ports are
terminated using 50Ω microstrip lines and they are orthogonal
(note that this is not shown in the cross section in Fig. 1,
but it is revealed later on in Fig. 2(a)). The parasitic patches
are electromagnetically coupled to the driven elements. The
compact MIMO antenna array is modelled and discretized
in CST-MWS using the time domain FIT method with an
accuracy of -30 dB and a maximum cell density of 10 cells
per wavelength resulting in about 200,000 hexahedral mesh
cells in total. Each simulation costs about 1.5 minutes on a
workstation with Intel 4-core i7 CPU and 24GB RAM.

minimize max|S11| 4.5GHz − 8.5GHz (1)

For the AI-driven synthesis of the compact MIMO antenna
array, the design parameters, their given search ranges and
the geometric constraints in Table I are considered. The
optimization goal is the minimization of the maximum return
loss over the operational bandwidth of 4.5 GHz to 8.5 GHz
as shown in (1).

SADEA-I generates a design which obtains a max(S11)
of -10.3 dB in the bandwidth of interest after about 430
simulations in around 14 hours. Note that CST-MWS antenna
optimizers were employed to synthesize this antenna without
any recorded success after several runs requiring hundreds of
EM simulations. A typical result using 2019 CST-MWS TRF
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obtains a max(S11) of -3 dB in the bandwidth of interest after
several hundreds of EM simulations. The physical implemen-
tation of the SADEA-I synthesized design as a finished and
ready-to-use product is shown in Fig. 2(a). The simulation and
measurement results for the free space return loss are shown
in Fig. 2(b) and it can be observed that they are in close
agreement.

 

(a) Physical implementation of SADEA-I synthesized design.

 
(b) Free space return loss.

Figure 2. The multilayered compact MIMO antenna array (example 1).

B. Example 2: Microwave Imaging Antenna

The second example is the 10-variable microwave imaging
antenna for UWB body-centric applications [24]. The layout
of its primitive design is as shown in Fig. 3(a). It primarily
consists of two uniform rectangular planes which form a
co-planar partial ground, a circular radiator fed by a 50Ω
microstrip line with four T slots which are fused at the
head centrally etched on it. The microwave imaging antenna
is implemented on an FR-4 substrate having a loss tangent
(tan(δ)) of 0.025, a relative permittivity (εr) of 4.3 and a
thickness of 0.8 mm. It is modelled and discretized in CST-
MWS using the time domain analysis FIT method with an
accuracy of -40 dB with a maximum cell density of 20 cells
per wavelength resulting in about 300,000 hexahedral mesh
cells in total. Each simulation costs about 2 minutes on the
average on a workstation with Intel 4-core i7 CPU and 24GB
RAM.

For the AI-driven synthesis of the microwave imaging
antenna, the design parameters, their given search ranges and
the geometric constraints in Table II are considered. The
optimization goal is the minimization of the fitness function
(Fmon) in (2) to achieve the design specifications in Table III.
For the comparisons, the computing budget are as follows:

 

(a) Layout of the primitive design.

 (b) Physical implementation of
SADEA-III synthesized design.

Figure 3. The microwave imaging antenna (example 2).

500 parallel simulations (i.e., 1500 EM simulations in total
considering three simulations are carried out in parallel [16],
[19]) over 10 runs for SADEA-III, 3000 simulations over
five runs and 5000 simulations over three runs are used for
2019 CST-MWS TRF and 2019 CST-MWS PSO, respectively.
Additional runs are not affordable for 2019 CST-MWS PSO
and 2019 CST-MWS TRF because a single run costs several
days. Note that for 2019 CST-MWS TRF, all initial designs
for each run are randomly generated using the LHS (Latin
Hypercube sampling) method [20] and sigma is set to unity
to direct search towards a global optimum.

Fmon = max(S11) + w ×max([2 dBi−Gmin, 0]) + ...
w ×max([Gmax − 5 dBi, 0])

(2)
where w is the penalty coefficient and it is set to 50. The set
value for w preferentially ensures that the specifications for
the bore-sight gain in Table III (i.e., Gmin and Gmax) are
satisfied first by largely penalizing Fm if they are violated.
Then, meeting the S11 requirement becomes the main focus
of the optimization procedure as soon as the Gmin and Gmax

requirements are satisfied.
After 2.5 days of optimization, SADEA-III obtains the

design shown in Table II and the performance for this design
is shown in Table III. The physical implementation of the
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Table II
SEARCH RANGES OF THE DESIGN VARIABLES AND A TYPICAL OPTIMAL

DESIGN BY SADEA-III (ALL SIZES IN MM) (EXAMPLE 1)

No V ariables Lower
bound

Upper
bound

SADEA-III
Optimum

1 Substrate width (SW ) 2 × DPR 3 × DPR 14.90
2 Microstrip length (ML) 20.00 50.00 18.52
3 Microstrip width (MW ) 0.50 7.50 0.84
4 Microstrip gap (MG) >0.00 21.50 0.12

5 Circular patch radius
(DPR) 2.00 25.00 7.21

6 Width of slot throat
(SLT ) >0.00 2 × DPR 5.98

7 Vertical slots’ depth
(SLV ) >0.00 2 × DPR 12.06

8 Horizontal slots’ depth
(SLH ) >0.00 2 × DPR 5.98

9 Partial ground plane
length (RPL) DPR ML 18.05

10 Feed guide width (PW ) 6 × MW 10 × MW 2.56
11 Substrate length (SL) = ML+(2 × DPR)+ 0.2 mm
12 Partial ground plane width (RPw) = (SW -(2 × MG)-MW ) ÷ 2

Table III
PERFORMANCE SPECIFICATIONS FOR EXAMPLE 1: UWB (3.1 GHZ TO

10.6 GHZ)

No Item Specifications SADEA-III
Optimum

1 Maximum return loss (S11) ≤ -10 dB -10.6 dB
2 Minimum bore-sight gain (Gmin) ≥ 2 dBi 2.2 dBi
3 Maximum bore-sight gain (Gmax) ≤ 5 dBi 4.7 dBi

SADEA-III synthesized design as a finished and ready-to-
use product is shown in Fig. 3(b) and the overall size is
33.14 mm × 14.90 mm × 0.8 mm, which is compact and
about half the size (linear dimensions) of a similar-state-of-
the-art design [25]. The simulated and measured results for
the free space return loss and on-phantom return loss of
the SADEA-III synthesized design are shown in Fig. 4(a)
and Fig. 4(b), respectively. From Fig. 4(a) and Fig. 4(b), it
can be seen that the simulated and measured results are in
reasonable agreement. Also from Fig. 4(b), it can be seen that
the microwave imaging antenna maintains its UWB operation
and is not overly detuned in the presence of a human phantom
modelled according to [26], [27].

The bore-sight gain requirements is met by all methods

Table IV
STATISTICS OF THE BEST MAX.(S11) VALUES USING DIFFERENT METHODS

(EXAMPLE 1)

Method Best Worst Mean Median Std.
SADEA-III
(10 runs) -10.6 dB -10.05 dB -10.38 dB -10.39 dB 0.1815

2019 CST-
MWS TRF
(5 runs)

N/A N/A N/A N/A N/A

2019 CST-
MWS PSO
(3 runs)

-5.92 dB -5.02 -5.61 -5.90 0.5113

 

(a) Free space.

 

(b) On-phantom

Figure 4. Simulated and measured return loss for the SADEA-III optimized
design of the monopole antenna.

 

Figure 5. Convergence trends of SADEA-III and 2019 CST-MWS PSO
(example 2).

over all runs. In terms of the quality of results, the following
observations are made from Table IV for the return loss: (1)
SADEA-III satisfies the return loss requirement in Table III
in all 10 runs showing a very good result even for the worst
case (2) A low standard deviation value for SADEA-III shows
that it has good robustness. (3) 2019 CST-MWS TRF fails to
satisfy the return loss requirement in Table III and generated
designs with geometric incongruities in all five runs. Thus,
2019 CST-MWS TRF results are considered as not applicable
(N/A). The rationale for this is that designs with geometric
incongruities are impractical and cannot be fabricated for real-
world use. (4) CST-MWS PSO fails to meet the return loss
requirement in Table III in all three runs.

In terms of efficiency, the convergence trend is shown in
Fig. 5. From Fig. 5, PSADEA uses an average of 1090 EM
simulations to satisfy all the specifications in Table III and then
converges to obtain an average max(S11) of -10.38 dB after
1450 EM simulations. Also from Fig. 5, it can be observed that
2019 CST-MWS PSO obtains an average max(S11) of -5.61
dB after 972 EM simulations with no significant improvement
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over 5000 EM simulations. To obtain the result of 2019 CST-
MWS PSO, PSADEA needs 127 EM simulations on average.
Hence, it can be deduced that PSADEA is 7.7 times faster
than 2019 CST-MWS PSO on the average for this example.
Note that the convergence trend for 2019 CST-MWS TRF
is not shown in Fig. 5 because it is N/A due to geometric
incongruities as earlier mentioned.

IV. CONCLUSIONS

In this paper, the optimization capacity of the SADEA
algorithm family is demonstrated using two real-world antenna
design problems as case studies. For the first antenna design
problem, which is the optimization of a multi-layered compact
MIMO antenna array for wireless communications, a very
good design solution ready for fabrication was obtained by
SADEA-I in less than a day. For the second antenna design
problem, which is the optimization of a microwave imag-
ing antenna for UWB body-centric applications, SADEA-III
obtained a very good design solution ready for fabrication
in less than three days. For both problems, the efficiency
of the SADEA algorithm family is revealed. 2019 CST-
MWS optimizers were applied to both problems without any
successful outcome after several runs using hundreds of EM
simulations. The quality of the design solutions obtained by
the SADEA algorithm family is validated through the physical
implementation of the optimal design for the MIMO antenna
array and a typical optimal design for the microwave imaging
antenna. A close agreement is found to exist between the
measured and simulated results for the fabricated prototypes.
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