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Abstract - Generating frequency sweeps in the S-Band can be achieved in a number of ways.  

However, achieving the performance requirements of modern communication and radar systems 

with tight tolerances on frequency, timing and amplitude across temperature and batch variation is 

seldom easy. 

Add to this the desire from manufacturing to remove the need for individual module tuning and 

alignment makes these requirements harder still.  Keeping the flexibility to change how the sweep is 

generated for example in a radar system (none / linear / hyperbolic / arbitrary) is a technical 

challenge and can often lead to complex and expensive solutions. The aim of this paper is to show 

that all these objectives can be met using cost effective commercially available FPGAs and DACs 

using the strengths of today’s technology and exploiting Nyquist point of normal DAC operation. The 

implementation of these concepts are illustrated with a practical example of how this is achieved.  

This real life example provides an insight into the factors to consider when designing a system to 

directly digitally synthesize an S-Band output.    

Introduction 

This paper will discuss the generation of a single selectable S-Band (2-4GHz) frequency with a design 

goal of using low-cost commercially available technology. 

The method of generating the S-Band signal in the digital domain is referred to as Direct Digital 

Synthesis, (DDS). This approach does not necessarily require a FPGA and DAC, single-chip solutions 

provide a very cost effective means of synthesising lower frequency signals and linear chirps. 

However such parts may be limited both in terms of the scope to adjust the modulation (e.g. chirps 

that are non-linear) and also in the output level. Combining the modus operandi of this class of 

components with a good understanding of FPGA and DAC technology it is possible to provide an 

enhanced solution to the problem.   



ARMMS April 2015 | J. Riley  page 2 

A Background to Direct Digital Synthesis 

There are three main aspects to the versatile DDS system, the FPGA which is used to generate the 

signal and modulation, the output DAC, followed by a low pass filter. This is shown below in Figure 1 

System Topology. 

 

 

 

 

There are two ways to create a sine wave digitally before passing the value to the output DAC to 

convert into the analogue domain ‘Sequential Sine Generation’ and ‘Phase Accumulator Generation’. 

 

Sequential Sine Generation 

This method populates a block of memory with the pre-computed values that are sent to the DAC in 

a sequential order. This sequence produces the required output signal, the memory contents is 

passed to the DAC in the order in which they appear to keep the process straight forwards. This is 

illustrated in Figure 2 Sequential Sine Generator. 

 

 

Figure 2 Sequential Sine Generator 

 

 

 

Figure 1 System Topology 
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Phase Accumulator Generation 

The Phase Accumulator Generation, which will be discussed though this paper, has memory that 

holds one complete cycle of a sine wave. In this case the method of generating a frequency is to add 

the phase angle required to the present angle and use this to index the sine table. This is shown in 

Figure 3 Phase Angle Incrementing Sine Generator. 

 

 

Figure 3 Phase Angle Incrementing Sine Generator 

 

The two Sine generators methods are almost identical in terms of the hardware required. For the 

Sequential Sine Generator, the “Address Counter” is seen to be equivalent to the “Phase 

accumulator” of the Phase Angle Incrementing Sine Generator with the exception that in the former, 

the increment value is always 1, whereas in the latter the value is the phase increment (M). 

Comparing the two methods, the benefit of the Phase Angle Incrementing Sine Generator is seen 

when changing frequency. The Sequential Sine Generator requires either a change of the clock 

frequency fC or the data in the Sine Lookup Table; both of which are not easily done while the 

system runs. The Phase Angle Incrementing Sine Generator simply requires the new value of the 

phase increment (M). A diagram of the phase incrementing method is shown in Figure 4 Phase 

incrementing method. 
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Figure 4 Phase incrementing method 

 

For S-Band frequencies, taking 2.900 GHz to 3.100 GHz as the example band section of interest, the 

upper frequency determines the DAC clock speed. If the Nyquist sampling theorem is to be satisfied, 

the minimum clock frequency for the DAC will need to be at least 6.5 GHZ without use of a 

significant ‘brick wall’ filter. Using a DAC with 8-bit resolution, the data transfer rate that the DAC 

requires is therefore the product of these two numbers or 52 Gbps. FPGAs and DACs to meet these 

requirements are extremely expensive. However, the Nyquist sampling frequency rule may be 

broken if suitable care is given to the selection of operating frequency ranges. 

 

Super-Nyquist Operation 

When the Nyquist sampling frequency rule is broken, a series of frequency reflections takes place. If 

the sampling frequency is fC then the Nyquist frequency is fC/2. The frequency band from DC – (fC/2) 

is reflected at the Nyquist frequency and has a direct 1:1 mapping to the band fC - (fC/2) respectively. 

This mapping of the same data into other frequency bands is called Aliasing. For illustration, if fC is 

500 MHz, the Nyquist frequency is 250 MHz, so a signal present at 200 MHz has a mirror image 

counterpart at 300 MHz. The truth of this is shown in Figure 5 Reconstruction of 200 MHz and 300 

MHz signals from data sampled with a 500 MHz clock, note that the sampling intervals are marked in 

red and both the 200 MHz and 300 MHz waves have the same values at these points in time. Thus 

from the same data both 200 MHz and 300 MHz signals are valid solutions and either may be 

extracted with suitable filtering. 
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Figure 5 Reconstruction of 200 MHz and 300 MHz signals from data sampled with a 500 MHz clock 

If the data comprises just the sample points marked with the cyan line, a low-pass filter will recover 

the 200 MHz wave (green), or a band-pass filter can be used to recover the 300 MHz wave (blue). 

Of course, the frequency band does not stop at fC, or 500 MHz in the case of the illustration given, it 

continues to higher frequencies. This block reflects at all integer multiples of fC upwards. Just as 200 

MHz is the image in the base-band range, usually referred to as the First Nyquist zone; and 300 MHz 

is the image if the filtering had selected the Second Nyquist zone; so does this pattern continue, in 

theory ad infinitum. The extraction of the alias from any frequency range just requires the 

appropriate band-pass filter. 

While it is possible to extract higher frequency components, there are limitations to consider. The 

first of these is that the available output is fundamentally limited by the sin(x) / x function, otherwise 

known as the “sinc” function. This results in the available signal dropping to zero at all integer 

multiples of the sampling frequency fC. Attempting to generate frequencies close to DC in base-band 

result in very low amplitude signals in the aliases in higher Nyquist zones. This is shown in Figure 6 

Nyquist zones for a 0.9 GHz sampling clock with example filter for 3.0 GHz signal. The maximum 

possible amplitude available is also shown to decrease with increasing frequency according to the 

1/x asymptotes require.  

 

 

Figure 6 Nyquist zones for a 0.9 GHz sampling clock with example filter for 3.0 GHz signal 
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It might be thought that as the samples at higher frequencies are attenuated, but by progressively 

smaller amounts, it should be possible to use the 50th Nyquist zone to extract very high frequencies. 

The reality is that this is generally not possible for two key reasons. Firstly the width of the band-

pass filter and the cut-off rate become unreasonably narrow. Secondly, the assumption that the DAC 

has an infinite slew rate is of course not the case and the device also produces bandwidth related 

attenuation. A DAC with a sampling frequency of 2.3 GHz might have a -3dB bandwidth of 2.1 GHz. 

This figure is relative to the sinc waveform and means the sinc function will determine the level of a 

full-scale signal at 2.1 GHz, but the actual level coming out of the DAC is 3dB lower.  

The Noise floor should also be considered when selecting a DAC. Using a DAC with a low noise floor 

should allow operation in the frequency range 2.900 – 3.100 GHz.  By looking at the difference 

between the signal level required and the achievable noise floor allows a decision to be made on the 

use of a lower cost DAC that meets requirements. Thus if the sinc function predicts a 25dB signal loss 

and the noise floor of the DAC is 70dB below the level of the baseband signal, there still remains a 

45dB headroom which in many applications is quite sufficient.  If requirements are for 60dB 

headroom above the noise floor a higher specification DAC is probably needed.   

In choosing to use super-Nyquist operation, and the actual sampling frequency is about 1 GHz, an 8-

bit DAC will require data at 8 Gbps. If a higher resolution DAC is chosen, this figure goes up. This has 

the effect of making a single high-speed serial link between the FPGA and the DAC difficult or 

impossible with today's technology without incurring significant cost increases.  

The alternative to a fast serial link is a parallel interface architecture. Many high performance DACs 

have a two-port interface. When the dual-port standard mode is used, the data width is twice the bit 

width of the DAC and therefore runs at half the speed. So if the DAC is 11 bits resolution, there will 

now be a 22-bit interface, but it only needs to run at 500 MHz allowing the use of the low-cost 

FPGAs. 

 

Choosing Sampling Frequencies 

The frequency range stated as the required band is 200 MHz wide. It will have been noticed that the 

sinc function shows that the output level spread across a 200 MHz frequency range shows about 2-3 

dB drop-off for the base-band but is a steeper slope at the S-Band frequencies. The curve can be 

predicted quite easily, but it is much nicer if this can be ignored completely so that the only 

significant effect to have to deal with is being on the bandwidth cut-off slope. This may be quite 

feasible if a little more of the requirements can be pinned down. In many circumstances, the need to 

operate anywhere in the frequency band exists, but if a chirp is required, it is very unlikely to need to 

sweep the entire 200 MHz allocation. Instead, suppose the chirp is only required to sweep 30 MHz, a 

width as narrow as this on the sinc curve represents a little over 1 dB of difference when the starting 

frequency is on the flatter part of the curve. This is something that can be quite easily managed. 
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Generating frequencies at or close to ¼ fC has many benefits. First, it is fairly close to the peak of the 

sinc curve for that particular Nyquist zone – so a good signal level is feasible and the amplitude 

variation over a frequency sweep of say 30 MHz is probably small enough to be safe to ignore. 

Second, it is the point at which the aliases in other Nyquist zones will be the furthest away – which 

eases the design of the band-pass filter on the DAC output. The DAC will need either the true clock 

frequency or a lower frequency that it can multiply up if it has an internal PLL. For now, presume no 

PLL exists in the DAC, in which case the true clock frequency has to be generated externally. 

If the decision is to use the seventh Nyquist zone, and that the frequency needs to be about ¼ fC it 

follows that the frequency to synthesise by the DAC is given by this formula: 

13

Sband

DAC

f
=f  

Also the corresponding sampling clock fC is four times this figure. 

Thus the range 2.900 GHz to 3.100 GHz requires the sampling clock frequencies fC to be 892.31 MHz 

to 953.85 MHz. 

Considering the positions of the aliases will show how steep the skirts of the band-pass filter need to 

be. The closest side is the one governed by the lowest sampling clock frequency and thus will be 

closest to the high end of the band. 

13

2fSbandLow
SbandLowhialias +f=f  

The low side alias is given by 

13

2fSbandHigh

SbandHighloalias f=f −  

Thus the figures are the high-alias is at 3346 MHz (i.e. 246.15 MHz above 3.1 GHz) and the low-alias 

is at 2623 MHz (i.e. 276.93 MHz below 2.9 GHz). 

From here, how steep the skirts of the band-pass filter need to be can be calculated. It is important 

to add that clock break-through from the DAC should be expected at 3 fC so the highest frequency 

will be closest to being in-band. In this case it will be at 2.8616 GHz. While this sounds very close to 

the pass-band, a good DAC should suppress this and make it at least 60 dB below the base-band 

signal level. In the seventh Nyquist zone, it works out to being about 30-40 dB below the intended 

output. 

The other two significant remarks that need to be made before closing this section concern accuracy 

of a generated sweep and start/stop time. 

Unlike harmonics where a 10 MHz change in the fundamental results in the nth harmonic changing 

by n * 10 MHz; aliases retain a 1:1 scaling, thus they are the same change whatever Nyquist zone is 

being used. This means that if the accuracy of the frequency sweep at base-band is correct to within 

100ppm, then the proportional error in S-Band is reduced in proportion to the ratio from base-band 

to S-Band. Thus for the seventh Nyquist zone, this factor is 1/13th, or in this example about 7.7ppm. 
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The matter of the time taken to start producing S-Band output from the time that the base-band 

signal is generated can be approximated to 1 complete base-band cycle. Thus if the base-band 

output is 230 MHz, the S-Band output is seen having ramped up to full amplitude in approximately 

4.5 ns. The time to stop producing S-Band output relative to the base-band output is the same. This 

too suggests that the sweet-spot of operation is at or close by the fC / 4 frequency. 

 

FPGA Requirements 

With the DAC related aspects known, the FPGA can be determined. In the example using an 11bit 

DAC, we have a dual 11-bit data interface. The DAC is clocked at up to 953.85 MHz, so because two 

11-bit words are transferred to the DAC in each operation, the FPGA-DAC link therefore runs at up to 

476.93 MHz. This sort of transfer rate exceeds the capabilities of the many single-ended interface 

standards that FPGAs support. The use of differential signalling becomes mandatory. The 

commonest interface standard for these sorts of transfer rates is LVDS. Although there are twenty 

two differential pairs, plus the clock pair; the fact that the transfer rate of just under 500 MHz is less 

than half the speed that this interface could be run at, means that signal flight-time matching is not a 

critical area of the PCB design. 

For the low-cost FPGAs to be able to support twenty two LVDS differential pairs plus a clock pair is 

not usually too troublesome. The primary factor is whether the internal design of the FPGA can be 

made to run fast enough. Running the internal clocks at 476.93 MHz and accessing the Sine table 

values at this rate is not reasonable in the low-cost FPGAs. However, there is no need to do it this 

way. 

FPGAs may be run quickly, but the main way by which they achieve their high levels of performance 

is through parallelism. Even running the device at 476.93 MHz would still have required 2-fold 

parallel architecture to be used because the DAC really runs at twice that speed. It is only the data 

path that has been made wider to slow it down. 

In many parallel architecture systems the number of parallel computation blocks is often chosen to 

be a power of 2. This is because many operations are much easier to scale for as multiplication or 

division by powers of 2 is extremely simple, just like multiplication and division by powers of 10 in 

decimal is similarly trivial. For this system, 2-fold parallelism needs a 476.93 MHz clock, and is too 

fast to easily implement. A 4-fold system needs a clock of 238.46 MHz, which is feasible. But 8-fold 

parallelism is better, requiring a clock of 119.23 MHz. 
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The reason why 8-fold parallelism makes a good choice is due to how to perform the data 

multiplexing to compress 8 channels at 119.23 MHz into 2 channels to the DAC at 476.93 MHz. The 

newer FPGA families include special SERDES blocks (SERialiser / DESerialiser) in many of the low-cost 

FPGAs. The SERDES blocks are a much simpler implementation of the high-speed serial transceiver 

functions. Both perform serial / parallel conversion operations but the SERDES blocks able to run at 

about 1 Gbps whilst the high-speed transceivers are usually good for 6-12 Gbps. The SERDES blocks 

are custom hardware built into the device for the specific purpose of taking a slow but wide data 

channel and reducing it down to a fast and narrow channel. As is always the case, making use of the 

dedicated functions in the FPGA is more efficient and simpler than making the multiplexers from first 

principles. When such multiplexing is done, the choice of the input width is determined by what the 

hardware can support. The option of 2:1 may not be available, but a 4:1 multiplexer certainly is. 

Hence two lanes with 4:1 multiplexing behind it requires 8-fold parallelism. 

Apart from the I/O, the two other key factors to consider with FPGAs are the amount of logic 

elements and the amount of RAM. Sometimes a figure giving an estimate of the equivalent number 

of logic gates is given, but this is not a good metric to use for comparison. When we consider 

implementing the design for the Phase Angle Incrementing Sine Generator shown in figure 2, the 

phase accumulator requires 32 logic elements (although the number used to index the RAM is 

truncated to the top 12 bits only). The adder will also use about 32 logic elements (these may be 

part of the phase accumulator if the compiler chooses to implement it that way, but for now the 

assumption will be that the functions are not combined). The phase increment value will be assumed 

to be held in a register of 32-bits. This part requires 32 logic elements, but could probably be shared 

between all eight Sine Generators (for now assume that this is not the case). There will also be the 

need to pre-set the initial phase angles in all eight Sine Generators, but this shouldn't take any more 

logic than is already accounted for. Thus the complete logic usage is around 100 logic elements per 

Sine Generator. 

In addition to this, there needs to be an amount of RAM to perform the phase angle to amplitude 

look-up function. If the DAC needs 11 bits of data and the chosen phase accumulator resolution for 

indexing is chosen to be 12 bits, there will be 4096 11-bit words, or 45056 bits needed to store one 

sine wave cycle. In the Altera devices the FPGA memory blocks are 10 kbits in size, but because of 

data widths, eight are likely to be needed. In Xilinx devices the FPGA memory blocks are 36 kbits in 

size, and so two will be needed. A very nice FPGA feature is that the RAM is of the true Dual-Port 

variety, which means two different accesses can be taking place on the same clock cycle. Thus only 

half the amount of RAM is necessary because each block is shared between two Sine Generators. 

Looking at the smallest member of the low-cost families, both the Altera and Xilinx devices have 

around 20,000 logic elements available. Thus in terms of logic, about 5% of the device is needed. 

Remembering that the Xilinx RAM blocks are about 4 times bigger than the Altera ones; the smallest 

Altera part has 176 RAM blocks, thus about 18% of these are needed. The smallest Xilinx part has 25 

RAM blocks of which 8 are needed, which is about 32%.  

Overall, it is immediately obvious that if even the smallest members of the low-cost families have 

sufficient logic and memory resources, the choice of which part to use is primarily governed by the 

amount of IO needed for the FPGA to DAC link. 
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FPGA Enhancements – Example of a Linear Frequency Chirp 

Up to this point, the FPGA has only been acting as a simple Sine Generator. Now it's time to expand 

this with the example of generating a linear chirp.  

A chirp starts at one frequency fS and rises linearly to another frequency fE at which the chirp ends. 

The clock frequency provided to the DAC is fC which is 4fS by definition (it could be otherwise, but it 

makes things simple using this figure).  

In this example, the length of the chirp needs to be 10us. If the chirp begins at 2.950 GHz and must 

sweep to 2.965 GHz, the phase increment needs to change, see Figure 4 Phase incrementing 

method. In the following the phase angle is normalised such that the true angle in degrees is divided 

by 360. This is because it simplifies the conversion to binary which for a 32-bit register is best 

understood as 0 represents 0 and 232 represents 1 (i.e. 360 degrees). Note that expressing numbers 

in binary makes them hard to read, so hexadecimal will be used instead; when it is used the number 

will take the prefix “0x”. 

MHz=
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=

mplesNumberofSa

PhaseAngle
=PhaseAngle

C

ChangeChange

ampleChangePerS
×

 

Thus with every phase angle, the value of the phase angle also needs to be incremented by this 

amount. It is clear that this incrementing of the phase angle (M) can be done in much the same way 

as the overall angle is modified. This roughly doubles the number of logic elements needed, but does 

not affect the amount of RAM needed. This brings the requirements up to almost 10% of the 

capacity of the smallest parts available.  
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Further FPGA Enhancements 

Other modulation of the output signal might include changes in signal level. This kind of operation is 

just a multiplication by a scale factor. The low-cost families of FPGAs include DSP blocks that permit 

18-bit x 18-bit multiplication. This therefore gets added after the Sine table look-up but before being 

passed to the SERDES blocks. As the smallest FPGAs have around 50 such DSP blocks, of which 8 are 

required, it follows that this can be added using 16% of the available resource.  

So far dedicated DDS parts have been able to match these abilities, but there are a number of other 

things that put the FPGA based solution in a league of its own. Some common modulation schemes 

involve set phase changes at given points in time according to the data pattern to be conveyed. This 

too is very easy to do given the way how the phase accumulator works. Adding in another offset 

according to the data pattern it simple. We have shown how frequency transitions can be made 

progressively over a moderate number of data samples, but it is also possible to frequency hop 

almost instantaneously. Most of the time when DDS parts perform this operation, they do so with an 

abrupt phase change too, but in the FPGA method, this may be done in either an abrupt way or it 

can be done in a phase coherent manner.  

Generating chirps using linear methods is easy, but it is also possible to create hyperbolic modulated 

signals too. Depending on the aims, practically any arbitrary modulation method of changing the 

phase value can be done.  

Perhaps the best overall feature though is future-proofing. FPGAs are configured to perform the 

desired function each time they are powered up. The configuration image is often stored in either a 

dedicated Flash memory, or it may be part of the system memory. In both cases, the images can be 

changed permitting the update of hardware in field.  

 

Conclusion 

FPGA/DAC based systems for generating S-Band signals have much to commend them. The fact that 

the cost of the hardware can be brought right down through being able to make use of the lowest 

cost FPGA families is the starting point. From there, the winning features centre on the inherent 

flexibility that FPGAs offer as standard. This includes being able to configure the system to have 

various different modulation mechanisms applied, instantaneous frequency change and also the 

signal output level which may be applied individually or in combination. This may also provide the 

ability to remove the need for later processing of the signal further down the signal path since it may 

be possible to do the same thing in the digital domain inside the FPGA. 

 As a consequence, the use of FPGAs with an external DAC as an approach to DDS is worthy of 

serious consideration in practically all places where pure DDS is the first thought that comes to mind, 

and in many more complex systems too. 

 


