

LDMOS to GaN

Kevin Browne
Senior Field Applications Engineer
@ Richardson RFPD

kbrowne@richardsonrfpd.com

+44 (0)7557 285374

Why migrate from LDMOS to GaN?

- Before we try to answer that, lets look at why we are where we are.
 - LDMOS is the dominant technology for high power SSPAs (outside A & D)
 - Up to a certain power after which you need TWTs!
 - Or combine many transistors & accept the losses
 - Up to a certain frequency ~3GHz
 - For a decade or more GaN has been adopted in Aerospace & Defence applications
 - ...in RADARs, Jammers & increasingly in Milcomms
 - So, GaN is well established in some markets

Why is LDMOS dominant today?

- RF Silicon LDMOS (Lateral DMOS)
 - rose to prominence during the early 1990s, <u>due to its greater capability over Silicon</u>

 <u>Bipolar</u> transistors
 - by delivering better linearity, gain & efficiency at a lower cost.
 - It became the dominant technology for RF applications.
 - earned its dominant position in the late 1990s due to its satisfying the evolving RF demands.
- it had become default technology for Cellular PAs up to ~2700MHz.
- Became the default for RF amps, in industrial & medical applications.

Why change?


- LDMOS sustained its dominant position, till now!
- In our changing world there are **again** evolving demands for higher frequency, higher efficiency, greater instantaneous bandwidth & power.
- There are **new markets**; 5G, SatCom, wide-bandwidth Jammers
 - Upper sub-6GHz 5G bands cannot be implemented with LDMOS
 - 5G mmWave & Ku / Ka-band Satcom cannot be supported by LDMOS
- The reason for change is the same as that which made LDMOS king.
 - The Market! a need for satisfactory technology

Change to what?

- There are other technologies can address higher frequency:
 - Gallium Arsenide (GaAs),
 - GaAs is long established for high frequency devices all the way to 100GHz, but it is low voltage, limiting the power it can deliver.
 - Silicon Germanium (SiGe),
 - Achieves high frequency but not too much power
 - Gallium Nitride (GaN)
 - High power density with better gain & instantaneous bandwidth at higher frequency

Source Analog Devices

Why now?

- Decades of development & investment
 - Resolving/minimising issues like the memory effect
 - Resulting in high frequency processes and high power processes.
- A number of applications in evolving markets NEED the combined benefits GaN brings
- Adoption by BTS, Macro & massive MIMO... a high volume market enabling cost-down.
- Adoption in ORAN where there are many more players
- Outside of RF... this is the time for high volume EV production.
 - This is GaN or SiC devices

Time for change

- Leaders in LDMOS, like NXP have invested in a new high capacity GaN Fab
 - after using commercial GaN foundries as they recognize that the future of RF transistors will be GaN.
- LDMOS has not gone away & still has its applications.
 - Silicon Bipolar transistors are still in use today, but the volumes are very small.
 - The processes are old & arguably at risk.
- Emerging applications are demanding greater performance.
 - They simultaneously need greater instantaneous bandwidth, higher frequencies & higher power
- GaN is not 'better' than LDMOS per se, but in some applications it is the only technology that fits!
- It has been adopted in Aerospace & Defense applications for some time, but the wider adoption of GaN increases volumes & enables lower cost, through economies of scale.
- GaN is now mainstream & that is because of the reduction in cost & the wide array of devices; discrete transistors & MMICs that are currently available.
- It is possible to easily find a GaN part that meets your application needs.

Strengths of LDMOS

- Familiarity!
 - it is well understood
- Design techniques yield good results
- Maturity!
 - Processes are well established
 - Production yields are high!
- Cost
 - The gap is closing & this becomes less of an advantage

Strengths of GaN

GaN's High Band Gap permits ...

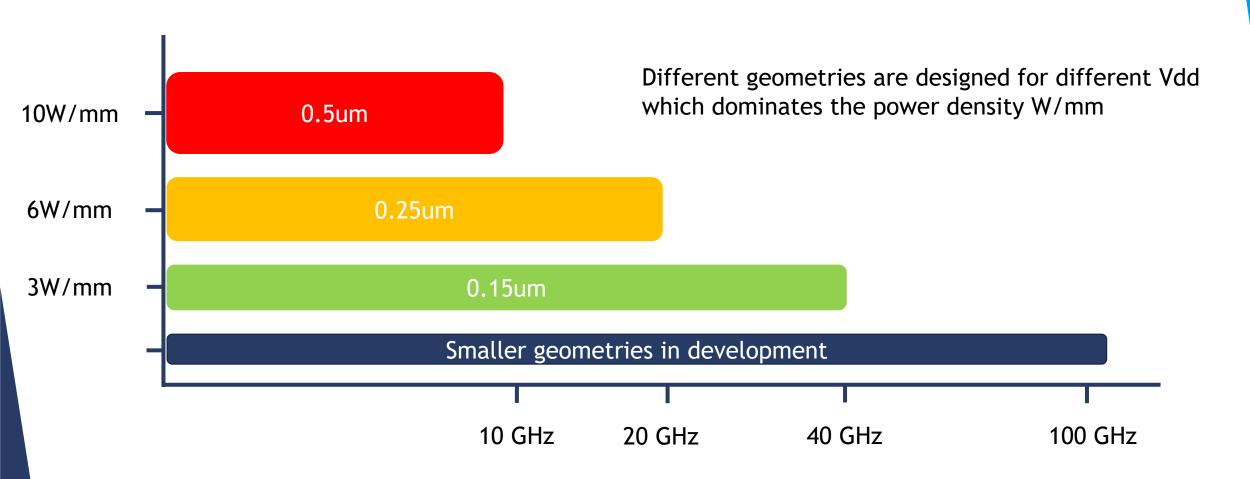
High Temperature operation

High Power density

Higher Ft

Large Instantaneous bandwidth

High gain at high frequency


= Better efficiency

- SiC wafers offer
 - very low Thermal Resistance
 - Robust devices

Not one GaN, but many flavours...

Power Density

Higher power density = higher thermal density

- More W/mm on die
- Hotspot is smaller,
- At higher temperature (225 DegC)
- Need SiC to achieve low Rth
- Drives need for better packaging to get 10E7 hours MTBF
- Drives need for better device attach. No voids!

For the same transistor PSat, GaN is much smaller than LDMOS

LDMOS 1 W/mm @ 1GHz.

GaN 0.25um 10 W/mm <u>@</u> < 8GHz.

SWaP

Size, Weight and Power

- GaN's attributes allow
 - Shorter line-up thanks to the gain
 - Smaller PAs:
 - since more power is delivered in a single device (less combining)
 - A single wideband PA can be developed
 - Lighter units:
 - less heatsinking, do to better efficiency
 - Smaller batteries
 - Higher power:
 - Greater power density

Barriers of conversion from LDMOS

- Was cost
- Was lack of experience of GaN
- Target markets were A&D, hence less need for linearity measurements
- Historic memory issues, making DPD tricky
- Depletion-mode transistors that require a negative Gate bias.
- Power sequencing is necessary.

What has changed?

- GaN die cost!
- Attitudes of Telecom's customers. Thanks to 5G it is show-time for BTS
- Adoption in Satcom an enabler for higher power Ku & Ka band SSPAs
- mMIMO needs power density/compact solutions
 - (more gain = shorter line-ups)
- Innovative packaging

Examples of where GaN used

- Cellular
 - BTS, mMIMO, O-RAN
- Milcomm,
- SatCom Gnd Station & LEO
 - 'New Space' (LEO) can exploit GaN's inherent tolerance to radiation
 - Intra-satellite communications
- Jammers
- RADAR (L, S, C, X, Ku)

Examples of integration/architecture to overcome issues

- Integration:
 - MMICs,
 - Tagore GaN switches with integrated CMOS driver,
 - GaN bias sequencing integrated into devices
 - Application Specific RF FEs
- Choice of architecture defined by application need
 - DPD/CFR,
 - ET (Envelope Tracking) PA
 - Balanced design
 - Doherty

The flood gates are open...

- GaN is mainstream!
- There are many GaN transistors & MMICs.
- Some vendors* are offering Commercial GaN foundry services
 - Where you get the design kit
 - You develop the component you want
 - You Simulate... Simulate... Simulate...
 - The foundry reviews your design
 - You sign-off
 - The foundry delivers your design as bare die or packaged parts.

It's not all about technology

- Vendors' Application Competence
- Evaluation boards, example designs
- models
- IP ownership
- Geo-politics; manufacture in USA, European or in the South-China sea?
- Packaging
- Reliability
- Capacity... Ability to supply / Availability

END

Kevin Browne
Senior Field Applications Engineer
@ Richardson RFPD

kbrowne@richardsonrfpd.com

+44 (0)7557 285374