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Abstract: 

This paper looks at a new design method for resonator-based multi-passband filters. The technique 
is able to design an arbitrary number of passbands. The design procedure is based on calculating 
the coupling matrix for a particular topology of coupled resonators. The physical design 
parameters, such as the centre frequency of each resonator, the coupling between resonators and 
the external Q-factors can all be analytically synthesised from the filter specifications. In the paper 
we will show designs for both Chebyshev and quasi-elliptic multi-passband filters. Theoretically, 
this method can produce any number of passbands where each band shares the same shape.  

Two simulated and one measured example of filters designed through this method are given; the 
three examples are: (1) A 10th order uneven bandwidth five-passband filter with Chebyshev 
response; (2) A 20th order uneven bandwidth five-passband filter with quasi-elliptic response; (3) 
Measured results from a 4th order dual-passband waveguide resonator based filter. 

I. INTRODUCTION  

Conventionally, the low-pass prototype Chebyshev response can be mapped into a higher 
frequency band with the well-known frequency transformation technique. This can be done 
using [1]. 
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Equation 1 

where   is the frequency variable for de-normalised response;   is the normalised frequency 

variable for low-pass prototype response; 0 is the centre frequency of the de-normalised 

passband; BW is the bandwidth of the passband (equal ripple bandwidth for Chebyshev 
response).  

Figure 1 gives a illustrative view of the de-normalised procedure based on Equation 1. In the 

figure, L and H are the lower and higher band limits for de-normalised passband, 

respectively. 
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Figure 1. The conventional de-normalised procedure for bandpass filter 

Now, let us consider a situation, by applying a new frequency transformation formula M( ) , 

the low-pass prototype response can be mapped into multiple higher frequency bands in the de-
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normalised procedure.  Figure 2 gives an illustrative view of this procedure, showing Li

and Hi  (i=1,2,3,…,M) are the band limits for ith passband on the de-normalised response. 
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 Figure 2. The de-normalised procedure for multi-passband filter 

This paper aims to present the multi-passband filter synthesis technique step by step. A new 
generalised approach of multi-passband filter design is given. It allows the number of passband 
and the bandwidth of each individual passband to be set as an arbitrary value. With given band 
limits of each passband, and specifications of the low-pass prototype response, a multi-
passband response can be generated with coupling matrix and external Q-factors synthesised at 
the same time. Some design examples of multi-passband filters with corresponding frequency 
transformation formulas which are based on this approach are presented. 

 

II. GENERALISED INVERTER COUPLED RESONATOR SECTIONS 

The synthesis techniques for multi-passband filter will be discussed from the topology point of 
view. Before that, the concept of inverter coupled resonator sections is introduced. They are 
called inverter coupled resonator sections, since the resonators in each section are coupled by 
inverters. Basically, the inverter coupled resonator section can be categorised into three types 
which are shown in Figure 3. For the first type, all bandstop resonators are directly connected to 
the bandpass resonator; it is named as parallel coupled resonator section. For the second type, 
the bandstop resonators have an inline layout and only one bandstop resonator is directly 
connected to the bandpass resonator; it is named as series coupled resonator section. The third 
one is the mixed coupled resonator section which contains both parallel and series couple 
resonator at the same time. The bigger circles represent bandpass resonators; the smaller 
circles represent bandstop resonators; the solid lines stand for couplings between resonators; 
the dashed lines mean some unshown re-occurring parts. 

(a) (b) (c)  

Figure 3. Different kind of inverter coupled resonator sections: (a) parallel, (b) series, (c) mixed 

The multi-passband filters we discussed here are built up with these sections. For each section, 
there is only one bandpass resonator, but the number of bandstop resonator is not limited. 
Within one particular multi-passband filter, all the sections share the same topology; the 
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repeating sections are connected through the bandpass resonators. It is actually the inverter 
coupled resonator section that ultimately determines the frequency transformation formula and 
the multi-passband response in this multi-passband synthesis technique [2]. 

 

A. PARALELL COUPLED RESONATOR SECTION 

Figure 4 shows a generalised multi-passband filter which is built up by parallel coupled 
resonator sections. Resonator 1 to n are the bandpass resonators. For example, if these n 
bandpass resonators generate an nth order Chebyshev response, then each passband of this 
multi-passband filter will have the same nth order Chebyshev response.  

1 2 nPort 1 Port 2

Parallel coupled resonator sections

1st section 2nd section nth section

kp1,2 kpj,j+1

 

Figure 4. The topology of a generalised multi-passband filter which is built up by parallel 
coupled resonator sections. The bigger circles represent bandpass resonators; the smaller 
circles represent bandstop resonators. 

The couplings in between bandpass resonators 1pj , jk   (j=1,2,…,n-1) can be calculated by [2], 
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(j=1,2,…,n-1) Equation 2  

in which , 1j jJ   (j=1,2,…,n-1) are the values of J-inverters of low-pass prototype filter. In the case 

of filter with Chebyshev response, they can be obtained from standard Chebyshev filter 

synthesis procedure that are calculated from g-values in Equation 2; 1b  is the susceptance slope 

parameter of the resonators whose centre frequency is 1o  which can be calculated from [3], in 

which Ci and Li are the equivalent capacitance and inductance of ith resonator. 

 i oi ib C  ,           oi

i i

1

L C
 


         (i=1,2,3,…,M) Equation 3  

Figure 5 presents a detailed picture of the 1st section of the multi-passband filter that is shown 
in Figure 4. The multi-passband filter is made up of n sections like this. It shows a generalised 
topology of a single parallel coupled resonator section. M is the number of resonators in one 
parallel coupled resonator section. M could be any positive integers. In each resonator section, 
the bandpass resonator is directly coupled to M-1 bandstop resonators. So there will be M n  

resonators in total for the multi-passband filter. oi  and ib (i=1,2,3,…,M) are the centre 

frequency and susceptance slope parameter for the ith resonator, respectively. When i=1, the 
resonator is a bandpass resonator; when i=2,3,…,M, the resonator is a bandstop resonator. All 
the n sections which are shown in Figure 4 share the same layout and parameters. 
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Resonator number (M-1)×n+1, 

centre frequency ω0M, 

susceptance slope para bM 
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Figure 5. 1st parallel coupled resonator section (n is the order of the each passband, M is the 
total number of passbands 

The couplings between the bandpass resonator and all bandstop resonators are calculated by 
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The above equation together with the frequency transformation PM ( )  for the multi-

passband filter with such parallel coupled resonator sections is based on [2] but generalised, 
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Equation 5 

By applying Equation 5, the prototype bandpass response can be mapped into M different 

frequency bands. Figure 6 gives an illustrative view of this procedure, in which Li  and Hi

(i=1,2,…,M) are the lower and higher passband limits for Band i (i=1,2,…,M), respectively. What 
should be noticed is that, for the multi-passband filter built up with this parallel coupled 

resonator sections, the centre frequencies of bandstop resonators oi  (i=2,3,…,M) are also the 

frequencies of transmission zeros between each band. There are M bands in total for this multi-
passband filter. 

  ωL1  ωH1   ωL2    ωH2   ωL3   ωH3   ωL4  ωH4  ωL5    ωH5                                                      ωLM    ωHM

|S21|

Frequency
ω Domain

-1      0      1 

|S21|

Frequency
Ω Domain

MP(ω)

Band 1 Band 2 Band MBand 3 Band 4 Band 5

ωo2 ωo3 ωo4 ωo5 ωoMωo6

Figure 6. A schematic S21 for multi-passband synthesis technique with parallel coupled 
resonator section 

It should be noted that filter with this topology could have a large number of couplings to each 
passband resonator, which may be difficult for practical implementation. 
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B. SERIES COUPLED RESOANTOR SECTION 

The topology of a generalised multi-passband filter based on series coupled resonator sections 
is shown in Figure 7. Again, the resonators from 1 to n are the bandpass resonators. These 
bandpass resonators determine the shape of each passband for this multi-passband filter. 

1Port 1 Port 2

Series coupled resonator sections

1st section 2nd section nth section

kp1,2 kpj,j+1
2 n

 

Figure 7. The topology of a generalised multi-passband filter which is built up by series coupled 
resonator sections. The bigger circles represent bandpass resonators; the smaller circles 
represent bandstop resonators. 

Figure 8 shows the detailed layout of the 1st section in Figure 7. Similar to the previous parallel 
case, there are also n repeating sections in one multi-passband filter. Each section contains one 

bandpass resonator which resonates at 1o  and M-1 bandstop resonators resonate at oi

(i=2,3,…,M). There are M n  resonators in this multi-passband filter, as well. 
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Figure 8.  1st series coupled resonator section (n is the order of the each passband, M is the total 
number of passbands) 
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The couplings between the resonators in one section are defined by, 

The frequency transformation SM ( )  for this series coupled resonator section based multi-

passband filter is generalised from [4], 
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Equation 7  

The illustrative procedure of this multi-passband de-normalising process carried out by 
Equation 7 is shown in Figure 9. 
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Figure 9. Schematic S21 for multi-passband synthesis technique with series coupled resonator 
section 

There are M passbands in total for this multi-passband filter as well. But it should be noticed 

that, compared to the parallel coupled resonator section based topology, oi  (i=2,3,…,M) are not 

the transmission zeros between each band anymore; they only act as the centre frequencies of 
the ith (i=2,3,…,M) resonator. 

 

C. MIXED COUPLED RESONATOR SECTION ― AN EXAMPLE FOR FIVE-PASSBAND 
RESPONSE 

 

Figure 10 shows a generalised multi-passband filter made up of mixed coupled resonator 
sections which includes both parallel and series coupled resonator structures. Resonator 1 to 
resonator n are still bandpass resonators, which determine the passband shape in the de-
normalised multi-passband response. 
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1Port 1 Port 2
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Figure 10. The topology of a generalised multi-passband filter which is built up by mixed 
coupled resonator sections. The bigger circles represent bandpass resonators; the smaller 
circles represent bandstop resonators. 

Because of the complex in parameter naming, an intuitive example topology of a single mixed 

coupled resonator section is given in Figure 11, rather than a generalised topology. But it still 

gives a good indication of the structure.  
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4n+1, ω05, b5 

3n+1, ω04, b4 

 

Figure 11. An example of mixed coupled resonator section (for five-passband response) 

In Figure 11, resonator 1 is the bandpass resonator; all the other four resonators are bandstop 

resonators. Two bandstop resonators (resonator n+1 and resonator 3n+1) are directly 

connected to the bandpass resonator; while the other two bandstop resonators (resonator 2n+1 

and resonator 4n+1) are connected to the adjacent bandstop resonators. The inter resonator 

coupling in this mixed coupled section can be calculated using Equation 4 and Equation 6. With 

this particular kind of mixed couple resonator section, a five-passband filter is given as an 

example. The frequency transformation for this five-passband filter is 
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Equation 8 

The corresponding frequency transformation procedure is presented in Figure 12. 
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Figure 12. Schematic S21 for five-passband synthesis technique with mixed coupled resonator 
section 

Specified examples are given in next section to validate the general theory of multi-passband 
filter synthesis technique which is proposed here. 

III. SIMULATED AND MEASURED MULTI-PASSBAND FILTER EXAMPLES 

To validate the synthesis technique, two examples of five-passband filters with simulated 
results are given. In addition, one example of dual-passband filters with measured result is 
given. The first is a 10th order uneven bandwidth five-passband filter with Chebyshev response 
(simulated). This is followed by another more complex example of a 20th order uneven 
bandwidth five-passband filter with quasi-elliptic response (simulated); this shows the 
flexibility of the synthesis technique. A fabricated 4th order dual-passband filter with Chebyshev 
response (measured) is given at the end of the paper. 

A. EXAMPLE 1: A 10TH ORDER UNEVEN BANDWIDTH FIVE-PASSBAND FILTER WITH 
CHEBYSHEV RESPONSE (SIMULATED RESULT) 

 

Figure 13 shows a 10th order five-passband filter which is built up with the mixed coupled 
resonator sections shown in Figure 11. 
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Figure 13. The topology of a 10th order five-passband filter (each passband has a 2nd order 
Chebyshev response) 
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The frequency transformation in Equation 8 maps Li  and Hi  (i=1,2,3,4,5) on the de-

normalised frequency domain to -1 and 1 on normalised frequency domain (see Figure 12),  this 
process can be interpreted as, 
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Equation 9 

let 

 1VF( ) F( )    
Equation 10 

Now,  Li  and Hi  (i=1,2,3,4,5) are the zeros of VF( ) , while VF( )  can also be expressed in 

terms of polynomial as,  
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ZF( )  and PF( )  are the nominator and denominator of the VF( ) , respectively. As 

shown in Equation 11, they are expressed in terms of polynomials; iz  (i=0,1,…,9) are the 

normalised coefficients of ZF( ) ; ip  (i=0,1,…,9) are the coefficients of PF( ) . 

By using Equation 8, Equation 10 and Equation 11, iz  (i=0,1,…,9) can be obtained in terms of  

oi and ib  (i=1,2,3,4,5). Meanwhile, Li  and Hi  (i=1,2,3,4,5) are the zeros of VF( ) . 

Therefore, iz  (i=0,1,…,9) can also be obtained in terms of Li  and Hi  (i=1,2,3,4,5) from the 

equation below,  
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  Equation 12 

A 10th order equation set which only contains oi , ib , Li and Hi (i=1,2,3,4,5) has been 

established. Therefore, oi  and ib  (i=1,2,3,4,5) can be derived with given Li and Hi

(i=1,2,3,4,5). Hence, the five-passband frequency transformation in Equation 8 is fully defined.  

A numerical example is given below. This example is based on the topology shown in Figure 13. 
The passband limits and corresponding design parameters are given in Table 1. The design 
parameters are obtained from passband limits by using the theory proposed above. 
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Passband limits Design parameters  

ωL1=9.20 GHz ωo1=9.94 GHz 

ωH1=9.29 GHz ωo2=9.59 GHz 

ωL2=9.41 GHz ωo3=9.43 GHz 

ωH2=9.67 GHz ωo4=10.35 GHz 

ωL3=9.80 GHz ωo5=10.43 GHz 

ωH3=10.17 GHz b1=9.22 

ωL4=10.25 GHz b2=51.88 

ωH4=10.48 GHz b3=12.16 

ωL5=10.57 GHz b4=78.94 

ωH5=10.70 GHz b5=13.30 

Table 1. The passband limits and design parameters for five-passband filter 

The corresponding coupling matrix is defined below, 
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Equation 13 

The non-diagonal elements in the matrix (inter-resonator couplings) can be calculated using 
Equation 2, Equation 3 and Equation 6; the diagonal elements (self-couplings) can be calculated 
with the following equation, in which f0i is the resonant frequency of ith resonator, f0 is the centre 
frequency of the filter. 
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 Equation 14 

The external Q-factors can be calculated from, 
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For this example, the coupling matrix and external Q-factors are calculated below, 
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 

0 0020 0 1803 0 0457 0 0 0 0 0371 0 0 0

0 1803 0 0020 0 0 0457 0 0 0 0 0371 0 0

0 0457 0 0 0737 0 0 0398 0 0 0 0 0

0 0 0457 0 0 0737 0 0 0398 0 0 0 0
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0 0 0 0 0398 0 0 1074 0 0 0 0

0 0371 0 0 0 0 0 0 0788 0 0 0309 0

0 0 0371 0 0 0 0 0 0 078

. . . .

. . . .

. . .

. . .

. .
M

. .

. . .

. .














8 0 0 0309

0 0 0 0 0 0 0 0309 0 0 0943 0

0 0 0 0 0 0 0 0 0309 0 0 0943

.

. .

. .

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

6 13eS eLQ Q .   

The circuit below is a waveguide implementation of the discussed 10th order five-passband filter 
with Chebyshev response simulated in CST microwave studio [5]. More details of how to use 
coupling matrix to generate such a waveguide filter is given in [6]. 

 

Figure 14. Waveguide implementation of 10th order five-passband filter (Chebyshev); the blue 
solid represents the air filling of the waveguide which is surrounded by perfect electric 
conductor. The red plane is the input port; the output port is placed at the other end. 

The simulated S21 and S11 together with the calculated S11 are plotted in Figure 15. The 
simulated results show a good agreement with the calculated one. 

Figure 15. The S-parameter of a 10th order even bandwidth five-passband filter with Chebyshev response 
(Passband 1: 9.20 ~ 9.29 GHz, Passband 2: 9.41 ~ 9.67 GHz, Passband 3: 9.80 ~ 10.17 GHz, Passband 4: 
10.25 ~ 10.48 GHz, Passband 5: 10.57 ~ 10.70 GHz) 
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B. EXAMPLE 2: A 20TH ORDER UNEVEN BANDWIDTH FIVE-PASSBAND FILTER WITH 
QUASI-ELLIPTIC RESPONSE (SIMULATED RESULT) 

This example is based on a 20th order five-passband filter topology shown in Figure 16. The five 
passbands are same as that in Example A, i.e. the design parameters are same as well (refer to 
Table 1). The difference is that in this example, each passband has a 4th order quasi-elliptic 
response with 20dB maximum return loss.  

Port 1 11 22 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

Port 2

 ωo2,b2

 ωo1,b1

 ωo3,b3

 ωo4,b4

 ωo5,b5

 

Figure 16. The topology of a 20th order five-passband filter (each passband has a 4th order quasi-
elliptic response) 

The corresponding coupling matrix can be calculated using Equation 2, Equation 3, Equation 6  
and Equation 14. The external Q-factors can be obtained from Equation 15. The results are 
shown below, 

 

0.0020 0.0901 0 0.0321 0.0457 0 0 0 0 0 0 0 0.0371 0 0 0 0 0 0 0

0.0901 0.0020 0.0883 0 0 0.0457 0 0 0 0 0 0 0 0.0371 0 0 0 0 0 0

0 0.0883 0.0020 0.0901 0 0 0.0457 0 0 0 0 0 0 0 0.0371 0 0 0 0 0

0.0321 0 0.0901 0.0020 0 0 0 0.0457 0 0 0 0 0 0 0 0.0371 0 0 0 0

0.0457 0 0 0 0.

M

 





 





0737 0 0 0 0.0398 0 0 0 0 0 0 0 0 0 0 0

0 0.0457 0 0 0 0.0737 0 0 0 0.0398 0 0 0 0 0 0 0 0 0 0

0 0 0.0457 0 0 0 0.0737 0 0 0 0.0398 0 0 0 0 0 0 0 0 0

0 0 0 0.0457 0 0 0 0.0737 0 0 0 0.0398 0 0 0 0 0 0 0 0

0 0 0 0 0.0398 0 0 0 0.1074 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0.0398 0 0 0 0.1074 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0











0.0398 0 0 0 0.1074 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0.0398 0 0 0 0.1074 0 0 0 0 0 0 0 0

0.0371 0 0 0 0 0 0 0 0 0 0 0 0.0788 0 0 0 0.0309 0 0 0

0 0.0371 0 0 0 0 0 0 0 0 0 0 0 0.0788 0 0 0 0.0309 0 0

0 0 0.0371 0 0 0 0 0 0 0 0 0 0 0 0.0788 0 0 0 0.0309 0

0 0 0 0.0371 0 0 0 0 0 0 0 0 0 0 0 0.0788 0 0 0 0.0309

0 0 0 0





0 0 0 0 0 0 0 0 0.0309 0 0 0 0.0943 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0.0309 0 0 0 0.0943 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0309 0 0 0 0.0943 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0309 0 0 0 0.0943
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 
 
 
 
 
 

8.92eS eLQ Q   

The component shown in Figure 17 is a simulated waveguide implementation of the 20th order 
five-passband filter with quasi-elliptic response. 
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Figure 17. Waveguide implementation of 20th order five-passband filter (quasi-elliptic); the blue 
solid represents the air filling of the waveguide which is surrounded by perfect electric 
conductor. The red plane is the input port; the output port is placed at the other end.  

The simulated S21 and S11 together with the calculated S11 are plotted in Figure 18, 

  

Figure 18. The S-parameter of a 20th order uneven bandwidth five-passband filter with quasi-
elliptic response (Passband 1: 9.20 ~ 9.29 GHz, Passband 2: 9.41 ~ 9.67 GHz, Passband 3: 9.80 ~ 
10.17 GHz, Passband 4: 10.25 ~ 10.48 GHz, Passband 5: 10.57 ~ 10.70 GHz) 

The mismatch of S-parameter in the CST simulation is mainly due to the physical limitations of 
the waveguide circuit. As one resonator is coupled to up to 4 neighbour resonators at the same 
time, uncontrolled cross-couplings between non adjacent resonators may occur. Further works 
will improve the results. The uncontrolled cross-couplings might be further attenuated by re-
arranging the circuit layout.  

C. EXAMPLE 3: A 4TH ORDER UNEVEN BANDWIDTH DUAL-PASSBAND FILTER WITH 
CHEBYSHEV RESPONSE (MEASURED RESULT) 

The 4th order dual-passband filter has a following topology; the corresponding frequency 
transformation is given in Equation 16. This example has two uneven passbands (refer to Table 
2). Each passband has a 2nd order Chebyshev response with 20dB maximum return loss.  
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1 2

3 4

Port 2Port 1 ωo1,b1

ωo2,b2
 

Figure 19. The topology of a 4th order dual-passband filter 
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Equation 16 

The passband limits and corresponding design parameters are given in Table 2. 

Passband limits Design parameters  

ωL1=8.65 GHz ωo1=8.74 GHz 

ωH1=8.78 GHz ωo2=8.81 GHz 

ωL2=8.82 GHz b1=54.61 

ωH2=8.85 GHz b2=291.7 

Table 2. The filter specifications and design parameters for dual-passband filter 

The corresponding coupling matrix and external Q-factors can be calculated using Equation 2, 
Equation 3, Equation 14 and Equation 15; the results are given below, 

 

0.0023 0.0304 0.0079 0

0.0304 0.0023 0 0.0079

0.0079 0 0.0137 0

0 0.0079 0 0.0137

M

 
 

 
 
 
 

 

36.30eS eLQ Q   

Below is the structure of this 4th order filter which produces a dual-passband response; each 
passband has a 2nd order Chebyshev response. 

 

Figure 20. Waveguide implementation of 4th order five-passband filter (Chebyshev); the blue 
solid represents the air filling of the waveguide which is surrounded by perfect electric 
conductor. The red plane is the input port; the output port is placed at the other end. 
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The filter is designed based on the passbands specification shown in Table 2; the measured and 
calculated S-parameters are plotted below in Figure 21. 

  

Figure 21. The S-parameter of a 4th order uneven bandwidth dual-passband filter with 
Chebyshev response (Passband 1: 8.65~ 8.78 GHz, Passband 2: 8.82 ~ 8.85 GHz) 

The passband insertion loss is about 1.5dB. It is mainly due to the conductor loss by aluminium 
and non-perfect construction. Further works on fine tuning may improve the results. 

IV. CONCLUSION 

This paper has proposed a generalised analytical synthesis method for multi-passband filter 
design. The inverter coupled resonator section is the key building block for the multi-passband 
filter discussed here; within one filter, there is only one kind of inverter coupled resonator 
section. For one inverter coupled resonator section, there is a unique frequency transformation 
corresponding to it. The multi-passband response is obtained by applying the frequency 
transformation to a low-pass prototype response. The number of the resonator in one inverter 
coupled resonator section is the number of the passbands; the number of the re-occurring 
inverter coupled resonator section determines the order of the response for each passband.  

Two simulated five-passband filters and a measured dual-passband filter are given. They are all 
designed in X-band and designed in waveguide form. To illustrate the flexibility of this synthesis 
technique, the three examples all have arbitrary uneven bandwidths; two examples have 
Chebyshev response, while the other one has quasi-elliptic response. The simulated and 
measured results show good agreements with the theoretical calculated ones. 
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