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This paper compares the thermal resistance of RF power transistors calculated using the 450 heat 

spreading rule with exact analytic values. It is shown that the 450 rule can under-estimate the 

thermal resistance by up to 40% for transistors with thin flanges and in which the die are small in 

comparison with the lateral dimensions of the package.  

INTRODUCTION  

The 450 heat-spreading approximation as a means of calculating thermal resistance was first 

introduced by Holway and Adlerstein [1] in 1977. They were concerned with calculating the 

thermal resistance of IMPATT diodes. In 1977 there were no commercially-available general-

purpose thermal analysis programs, and neither were there any personal computers; the only 

tool available to the average engineer was a pocket calculator. Consequently, there was a real 

need for a simple method of calculating the thermal resistance since the only alternative was to 

program a mainframe computer which was not only very time-consuming but engineers 

working in smaller companies didn’t even have access to this resource. Figure 1 shows the 

geometry of the problem that they were considering with their results. 

 

Examining Figure 1 suggests that the maximum error is no more than 12.5% between the exact 

and approximate values of thermal resistance. However, there are certain issues with this 

analysis. Firstly, their analysis indicates that the approximate method always underestimates 

the thermal resistance except when the diameter of the diode is the same as the gold heatsink 

when it overestimates it by 10%. No explanation was given for this reversal. Their reference 

value for thermal resistance was a 2D numerical analysis which they assumed was giving the 

exact value, but when the diode diameter is the same as the gold heatsink then no heat 

spreading occurs, the heat flow is purely columnar and the thermal resistance can be calculated 

exactly very easily. The approximate and numerical values for thermal resistance should exactly 

agree in this case but they don’t, there being a 10% difference. A simple hand calculation shows 

that the problem lies with the numerical analysis and not the approximate calculation which is 

exact when the diode diameter equals the heatsink diameter. Consequently, there is some doubt 

over how accurate the numerical analysis is for all other values of diode diameter.  
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Another issue is that Holway and Adlerstein were not calculating the thermal resistance of the 

IMPATT diode by itself but of the diode mounted in its heatsink which they assumed to be a 

semi-infinite copper block. When the diode diameter in Figure 1 is 6 mils, for example, the semi-

infinite copper block contributes about one-third of the total thermal resistance. If the semi-

infinite copper block is removed to allow for the calculation of the thermal resistance of the 

diode by itself then the error using the approximate calculation may be a lot larger than the 

12.5% shown in Figure 1. 

 

 

 

 

 

 

 

 

 

Figure 1. The structure analysed by Holway & Adlerstein [1] 

 

Figure 2 shows a typical Gunn or IMPATT diode oscillator. These oscillators dissipate typically a 

few Watts as heat and so the large metal block that houses the diode forms an adequate 

heatsink even if left in ambient air. Consequently, Holway and Adlerstein’s assumption of a 

semi-infinite heatsink was reasonable. However, today’s RF power transistors can dissipate 

hundreds of Watts and they would fail almost instantly if left in ambient air. RF power 

transistors need to be attached to a base-plate that maintains the underneath side of the 

transistor at a constant temperature. This change of boundary condition from a semi-infinite 

heatsink to a constant temperature also has an extremely fortunate consequence, namely that 

an exact analytic calculation of the temperature anywhere within the structure is possible and 

so there is no need to resort to a numerical analysis. Since an exact calculation is possible, then 

why bother using the approximate spreading calculation? The reason is that the exact 

calculation requires the summation of an infinite series whereas the approximate calculation is 

quick and easy requiring only a pocket calculator. The approximate method is still widely used, 

not just to calculate the thermal resistance of a complete packaged transistor but also to 

determine the appropriate spacing between the individual die in the package as well as to 

determine the gate to gate spacing on the die etc., but the question is how accurate is the 

answer? Given the uncertainties associated with Holway and Adlerstein’s analysis it seems 

appropriate to re-examine the accuracy with specific reference to its application to RF power 

transistors. 
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Figure 2. Typical Gunn or IMPATT oscillator. (Photo courtesy of ZAX). 

 

THERMAL ANALYSIS OF AN RF POWER TRANSISTOR 

Figure 3 shows a typical RF power transistor. One or more rectangular die are soldered to a 

large rectangular metal flange. It is possible to calculate the temperature at any point in this 

structure analytically for either a single heat-generating area on a multiple-layered heatsink, or 

for multiple heat-generating areas on a single-layered heatsink [2]. However, the temperature 

depends on x, y and z. It will be shown that the error between the exact and approximate 

solutions depends only on the ratio of two dimensions and so it is sufficient to consider a simple 

2D circular geometry on a multiple-layered heatsink. Figure 4 shows the structure to be 

analysed.  

 

 

 

 

 

 

 

 

 

Figure 3. Construction of RF Power Transistor. (Photo courtesy Cambridge University Press). 

 

In the analysis that follows it is assumed that there is zero heat loss by either convection or 

radiation and that all heat loss is entirely by conduction. The boundary conditions for the 

problem are: 

Tn(r, ln) = 0 for 0 < r < B   (1) 

���
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	  r = B, 0 <  zi <  li  (2)  
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where f is the heat flux density dissipated uniformly over a circular area of radius A and T is the 

temperature. Apart from the bottom surface and the area where the heat flux enters, all other 

surfaces are adiabatic as defined by equations (2) and (3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Structure for analysis. 

 

 

Brook and Smith [3,4] determined an exact analytic solution for the temperature at any point 

within this structure. The highest temperature occurs at the top centre of the structure i.e. at r = 

z = 0 and, in the case of just one layer, is given by: 
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where J0 and J1 are the first and second order Bessel functions, respectively, and αj is the jth 

order zero of J1 and σ is the thermal conductivity. Bessel functions are one of the standard 

functions within ExcelTM so that equation 4 is easily evaluated using a spreadsheet calculation. It 

can be immediately deduced from the expression given by Brook and Smith for the temperature 

at any point in the structure shown in Figure 4 that the value of σ has no effect on the 

temperature profile, a change in the value of σ simply scales the temperature at all points 

uniformly.  
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The thermal resistance Rth is given by Rth = T/(fπA2) and this is plotted in a normalized form of 

σπARth in Figure 5. The normalized thermal resistance depends only on the two ratios l/B and 

A/B and so Figure 5 is a set of universal design curves. For a sufficiently large thickness then the 

heat flow adjacent to the bottom is purely columnar so that eventually all the curves become 

straight lines, as expected, regardless of the value of A/B.  

 

Figure 5. Graph of Normalised Thermal Resistance vs thickness with heat flux radius as 

parameter. The individual data points are the values of thermal resistance as determined by the 

450 heat-spreading approximation. 

 

The 450 heat spreading solution for Figure 4 is obtained by assuming that the heat flux spreads 

out in a 450
 cone as shown in Figure 6, and that the heat flux is uniform at every cross-section of 

the cone i.e. for all values of z. Once the heat flux lines reach the outside radius then pure 

columnar heat flow occurs. Elementary analysis shows that the temperature at z = 0 for an 

arbitrary value of θ is given by: 

� � 	 ��� 	
"/�

.0 1
' 	2345

            (5) 

Equation (5) corresponds to equation (4) in the exact analysis. Holway and Adlerstein argued 

that in the limit as �	 → 	∞ then equation (4) must reduce to the well-known expression for the 

thermal resistance of a circular disk transmitting a uniform heat flux into a semi-infinite 

medium [5] which is given by  

89: � 	 .
;��            (6) 
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This requires that θ = 450 and is the origin of the 450
 rule. The normalized version of Equation 

(5) is also plotted in Figure 5 as a series of distinct data points. It can be seen that the 450 rule 

always underestimates the peak temperature and that the error can be as high as 40%. The 

error is greatest for structures in which the heat-flow is mainly by spreading with little 

columnar heat flow i.e. for thin layers with die small in area by comparison with the heat-sink 

size. 

 

 

 

 

Figure 6. Heat flux spreading out at angle θ. 

 

DOES A SMALLER HEAT SPREADING ANGLE REDUCE THE 

ERROR? 

Since the 450
 heat spreading angle always underestimates the peak temperature it seems 

reasonable to examine whether a smaller heat spreading angle will give better accuracy. Figure 

7 shows the effect of using a smaller heat spreading angle of 300 for A/B = 0.1. Although the 300 

heat-spreading approximation significantly reduces the under-estimate of thermal resistance 

for small l/B, it substantially degrades the accuracy for large l/B ratios where it over-estimates 

it by up to 45%. Although Figure 7 shows the results for one particular value of the ratio A/B, 

and for a particular reduced value of spreading angle, namely 300, the trends shown in Figure 7 

are general and apply for all values of A/B and other values of reduced heat-spreading angle. 

 

 

 

Figure 7. Graph of Normalised Thermal Resistance with 300 heat-spreading angle. 
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APPLICATION OF THE 450 RULE TO MULTIPLE LAYERS 

Brook and Smith [3,4] derived an exact analytic solution when the heat sink consisted of 

multiple layers as shown in Figure 4, but the expression is more complex than that given by 

Equation 4 and so is not reproduced here, but it is still fairly easy to compute using ExcelTM. The 

450 rule permits a very quick and easy way of determining the overall thermal resistance for a 

multi-layer structure. However, it is essential to account for the change of spreading angle 

which occurs at the junction of two materials with different thermal conductivities. Figure 8 

shows the geometry of the problem.  

 

 

 

 

 

 

 

 

 

Figure 8. Change of heat spreading angle at the junction of two materials with different thermal 

conductivities 

 

The relationship between θ1 and θ2 is easily derived. There can be no build-up of heat flux at the 

interface and hence the vertical components must be equal i.e. 

<.	 cos @. �	<�	 cos @�	  (7) 

Also, the temperature at any horizontal position along the interface must be the same on either 

side of the junction. Hence if the horizontal component of the heat flux travels a distance ∆x then 

A�	 BC45�∆E
��

� 	A�	 BC45�∆E��
 (8) 

Solving equations (7) and (8) gives  

2345�
2345�

�	����    (9) 

Equation (9) is the thermal analogue of Snell’s law in optics. Holway and Adlerstein cautioned 

about using the 450 heat-spreading approximation if the two adjacent materials had very 

different thermal conductivities. To illustrate the importance of observing this note of caution, 

consider the two structures shown in Figure 9. 

θ1 

θ2 

σ1 

σ2 

Heat flux 

F1 

F2 
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Figure 9. (a) Single-layer structure of WCu, (b) top 1mil of WCu is replaced with diamond, 

otherwise the structure and dimensions are identical. 

 

It seems obvious that the structure in Figure 9(b) should have a lower thermal resistance than 

that in Figure 9(a) since the two structures are identical in every respect except for the fact that 

the top 1 mil of WCu (a common material used as  the heatsink in ceramic packages due to its 

excellent coefficient of expansion match to that of Si) has been replaced with diamond which 

has a factor of about 10 times higher thermal conductivity than that of WCu. In Figure 9(a) the 

heat flow is assumed to be 450 throughout, in which case the 450
 heat-spreading rule gives an 

overall thermal resistance of 6.810C/W. In Figure 9(b) the heat flow is assumed to be 450 in the 

diamond and then given by equation (9) in the WCu i.e. θ2 = 4.70, there being almost no heat 

spreading in the lower region. Application of Equation (5) to the two layers results in an overall 

thermal resistance of 7.390C/W which is higher than for the situation of pure WCu; this is 

clearly non-sense. The dimensions and materials for the example in Figure 9 have been 

deliberately chosen to exacerbate the effect.  

 

If σ1 >σ2 then θ2 < θ1, in fact if σ1 is very much larger than σ2, which is the case with a diamond 

layer, then θ2 is close to zero i.e. there is almost no heat spreading in the lower layer and the 

heat flow is almost pure columnar. This is why the blind application of the 450 heat-spreading 

rule gives an erroneous result. Equation 9 is an exact relationship and so the only way that the 

450 heat-spreading rule can give a lower value for the thermal resistance of the structure in 

Figure 9(b) is if θ1 is significantly greater than 450. This is not in contradiction with the 

statement made immediately beneath equation 4 that the value of σ has no effect on the 

temperature profile i.e. the heat spreading angle. That statement is true for the situation 

considered, namely a single layer with a constant temperature at all points on the lower surface, 

but is not true for multiple layers where the temperature at the interface varies along the 

interface.  This example demonstrates that the heat spreads laterally in the diamond to a much 

greater extent than 450 and shows that even a very thin layer of diamond can significantly 

reduce the overall thermal resistance. This has been verified practically. Figure 10(a) shows the 

construction of a conventional 300W VDMOS RF power transistor using a BeO package while 

Figure 10(b) shows one using a very thin diamond substrate mounted directly on top of the 

flange [6]. In both cases the number and type of Si die are identical, and both parts deliver a 

minimum of 300W of RF output power. The conventional part has a specified thermal resistance 

of 0.4 0C/W while the diamond substrate version has a thermal resistance of 0.2 0C/W. If the 

BeO is replaced with diamond but everything else remains unchanged, then based on the ratio 

of the thermal conductivity of diamond to WCu then the overall thermal resistance would be 

close to 0.3 0C/W while in practice it is 0.2 0C/W. This verifies the assertion that the heat enters 

6 mil 

60 mil 

1 mil 

5 mil 

WCu Heatsink k= 1.8W/cm K 
Diamond k= 22W/cm K 

6 mil 
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the flange at a much greater spreading angle than 450 due to the large difference in the thermal 

conductivities of diamond and WCu.  

 

 

 

 

 

 

Figure 10. (a) Conventional 300W VDMOS RF power transistor using a BeO substrate, (b) The 

same transistor using a diamond substrate. 

 

CONCLUSIONS 

This paper has shown that the 450 heat spreading rule always underestimates the thermal 

resistance of an RF power transistor, and it can be as much as 40% lower than the real value. 

The paper has also shown that the 450 rule can give misleading results when applied to multi-

layer structures if the thermal conductivities differ substantially. Nevertheless, the 450 heat-

spreading rule remains a useful qualitative tool for the thermal design of individual transistor 

die as well as complete packaged transistors, but its quantitative estimates of thermal resistance 

should be used with caution, especially when the heat flow is predominantly by spreading or if 

layers with widely differing thermal conductivities are used. 
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