
RFSoC & Python Integration and Higher Levels of Abstraction

Adam Taylor & Stuart Smith Lincoln DSP

Adam@lincolndsp.com & Stuart@lincolndsp.com

www.linconldsp.com

The Xilinx RFSoC integrates for the first-time multi giga sample RF Analogue to Digital Convertors

(ADC) and RF Digital to Analogue Converters (DAC) within a heterogeneous processing system.

Traditionally high-performance mixed signal devices have not been implemented on CMOS

processes. Instead discrete devices where used separating the processing elements from the RF data

converters. However, thanks to digital assistance, it is possible to implement high performance

converters with the processing elements using 16 nm CMOS FinFET technology (etal., 2017)

(Christophe Erdmann et al., 2017).

In the RFSoC this fusion allows the mixed signal convertors to be tightly coupled with quad core Arm

A53 64-bit processors, Arm R5 32-bit real time processors and High-Performance Programmable

Logic which includes hard macro Soft Decision Forward Error Correction cores.

RFSoC Context Diagram

To the system developer such tightly coupled integration multi giga-sample sample RF Data

Convertors with processing offers several benefits

1. Reduced PCB Complexity – Integrating the RF converters, reduces significantly the tracking

required between the digital processing and the converters. This reduction allows for not

only a simpler routing but also a more compact solution in many cases a RFSoC solution can

be 50 to 75% smaller. This reduction in size is critical when developing RF Array solutions

such as MIMO Antenna where module spacing needs to be of the of the order of λ/2 to

prevent interference when formed into sub arrays

mailto:Adam@lincolndsp.com
mailto:Adam@lincolndsp.com
mailto:Stuart@lincolndsp.com
mailto:Stuart@lincolndsp.com
http://www.linconldsp.com/
http://www.linconldsp.com/

2. Simplified Clocking Architecture – The majority of the clocking network is within the RFSoC

this simplifies the clock distribution network, reducing the area, cost and power of the RF

clocking solution.

3. Reduced Power – An integrated solution requires fewer high-speed IO as such the power

required to drive those transceivers is saved. Power savings of up to 50% are achievable

using direct sampling RFSoC solution compared to a discrete implementation.

4. Flexible RF front end – The high sampling rate of the RF Convertors the RFSoC allows direct

RF sampling. Direct sampling offers several advantages, not only a component count

reduction. But also, as the solution is implemented digitally within the programmable logic it

allows adaption as algorithms, waveforms and standards evolve over the years enabling

updates in the field once deployed.

Direct Sampling Vs IF Conversion

5. Interfacing – To interface with the outside world, the RFSoC PS provides support for multiple

industry standard interfaces such as GigE, SATA, USB3, PCIe, CAN, I2C and SPI etc. This allows

the RF front-end, signal processing, control and communication to be implemented within a

single device.

6. Security – Many solutions for the RFSoC are remotely deployed or in critical applications as

such security of the solution is critical. To support secure solutions the RFSoC enables both

secure configurations using AES256 encryption and run time antitamper and security

features using the Sysmon and SECMON IP.

These factors enable the RFSoC to be used to create solutions which offer an optimal SWaP-C

implementation for a range of applications from 5G to Industrial Internet of Things, Software

Defined Radio, RADAR, Test and Measure, DOCSIS and Satellite Ground Stations.

RF Data Convertors
At the heart of the RFSoC is the RF Data Converter, to support the processing bandwidth necessary

to effectively use the converters the RF Data Converter is located within the programmable logic.

The RF ADC are capable of sampling rates at up to 5 GSPS, while the RF DAC can achieve sampling

rates at up to 10 GSPS.

Of course, it is not only the ADC or DAC converters which are included within the RF Data Converter

element but also includes Phase Locked Loops, Complex Mixers, Decimators and Interpolators,

Quadrature Modulation Correction along with support for the synchronisation across devices.

ADC Signal Path

DAC Signal Path

When it comes to performance of the RF DAC and RF ADC, they are comparable to those offered by

discrete solutions offering:-

• ADC Full Power Bandwidth – 4 GHz

• ADC 2 GSPS – Fin 3.5 GHz Spurious Free Dynamic Range (SFDR) is 80 dBC

• ADC 4 GSPS – Fin 3.5 GHz Spurious Free Dynamic Range (SFDR) is 72 dBC

• Cross Talk between ADC channels -70 dBC

• DAC Full Power Bandwidth – 4 GHz

• DAC 6.5 GSPS – Fout 3.5 GHz Spurious Free Dynamic Range is 72 dBC with a 20 mA output

drive.

• Cross Talk between DAC channels is -70 dBC

Spectral Plots of RF ADC and RF DAC performance below show the RF DAC output and RF ADC input

using the RFSoC development board the ZCU111. The RF DAC was configured to generate a sine

wave at 1350 MHz. The RF ADC samples this and uses the mixer and decimation to place the output

sine wave at 150 MHz.

RF DAC Output

RF ADC Input

Configuring the RF Data converter for an application can be achieved using traditional development

tools including Vivado and SDSoC. The RFSoC can also be programmed using System Generator

which supports Matlab and Simulink based approaches.

PYNQ Framework
PYNQ (www.Pynq.io) is an open source project started by Xilinx, which fuses the productivity of

Python with the acceleration provided by programmable logic within the Zynq / Zynq MPSoC / Zynq

RFSoC.

The tight coupling of Processing System (PS) and Programmable Logic (PL) in the Zynq / Zynq MPSoC

/ Zynq RFSoC allows for the creation of systems that are more responsive, deterministic, and power

efficient when compared to traditional CPU or GPU-based applications. This increase in performance

is due to the ability to leverage the parallel nature of the programmable logic to move accelerate the

application from the sequential software world to the parallel world enabled by programmable logic.

However, developing the programmable logic solution requires advanced digital design skills limiting

accessibility to software developers.

The PYNQ framework really is game changer in the programmable logic world. It enables the

performance of programmable logic provided by Xilinx heterogeneous SoCs to be leveraged using

Python one of the hottest programming languages, without the need to learn the digital design skills.

PYNQ framework uses iPython and Juypter notebooks enabling a browser-based development flow.

To be able to run the iPython kernel, and Jupyter webserver PYNQ images run an Ubuntu-based

Linux image containing Ubuntu’s root file system, package manager and repositories on the

processing system.

The PYNQ build flow itself is based upon the standard Xilinx PetaLinux build flow. This allows the

PYNQ build to access all the Xilinx Kernel patches, board support packages, and crucially add in new

drivers for processor system / programmable logic interfacing.

PYNQ framework stack

To transfer data between IP within the programmable logic and Jupyter notebooks, C-based drivers

associated with the IP are encased in Python wrappers.

Communication between the processor system and the programmable logic depends on the

interface used. In our PYNQ implementations, there are five different PS / PL interfaces which are

used:

1. Bitstream — This configures the programmable logic for the desired application. In the PYNQ

framework, the xdevcfg driver is used.

2. GPIO — This provides simple IO in both directions. In the PYNQ framework, this is supported

by the sysgpio driver.

3. Interrupts — Support interrupt generation from the programmable logic to the processing

system. In the PYNQ framework, this is supported by the Userspace IO driver.

4. Master AXI Interfaces — These are used to transfer data between the PS to the PL when the

PS is the initiator of the transaction. The PYNQ framework uses devmem when employing

master AXI interface.

5. Slave AXI Interfaces — These are used to transfer data between the PS and PL when the PL is

the initiator of the transaction. The PYNQ framework uses xlnk to enable these transfers.

Interfacing between the PS and the PL in the PYNQ framework

The PYNQ framework builds upon these Linux Kernel drivers and offers a range of PYNQ specific

APIs, which provide specific PYNQ libraries and drivers. These APIs let the Jupyter notebooks bridge

the gap, accessing the programmable logic.

As many of the applications require transfer of large quantities of data between the PS and PL, these

APIs include support for Direct Memory Access (DMA) using the xlnk driver.

PYNQ Framework

As developers, we leverage the PYNQ framework by connecting to the Jupyter server over a wired

ethernet link and developing our application in a browser-based interface.

PYNQ overlays for the RFSoC therefore enable rapid prototyping of solutions using python libraries

and frameworks. To support the RF Data Convertor within the RFSoC the PYNQ image contains

additional libraries

• xrfdc: A Python driver for the RF data converters.

• xrfclk: A Python driver for the onboard clock synthesizers.

Of course, to get the best from the RFSoC PYNQ implementation, overlays are needed for the

programmable logic which use the RF Data Convertor. One of the important aspects of PYNQ is the

open source community who provide overlays including for the RFSoC. Using the open source

community and sharing overlays in this manner opens the RF Data Convertor and programmable

logic up to a wider range of developers than traditionally is the case.

One example overlay available for the PYNQ RFSoC Image is the University of Strathclyde QPSK

overlay which demonstrates QPSK modulation.

QPSK Example

Conclusion
The RFSoC is a game changing device which enables system developers to address the increasing

performance and SWaP-C challenges solutions face. Combining this capability, the productivity

increases which comes when we use Python enables rapid application development and

prototyping, further accelerating development.

Bibliography

[1] B. V. etal., "A 13b 4GS/s Digitally-Assisted Dynamic 3-Stage Asynchronous," ISSCC, 2017.

[2] Christophe Erdmann et al., "A 330mW 14-bit 6.8GS/s dual-mode RF-DAC in 16nm FinFET

achieving -70.8dBc ACPR in a 20MHz channel at 5.2GHz," ISSCC, 2017.

[3] A. Collins and A. Taylor, "Addressing the 5G Challenge with Highly Integrated RFSoC," Signal

Interity Journal, 2017.

