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The Xilinx RFSoC integrates for the first-time multi giga sample RF Analogue to Digital Convertors 

(ADC) and RF Digital to Analogue Converters (DAC) within a heterogeneous processing system. 

Traditionally high-performance mixed signal devices have not been implemented on CMOS 

processes. Instead discrete devices where used separating the processing elements from the RF data 

converters. However, thanks to digital assistance, it is possible to implement high performance 

converters with the processing elements using 16 nm CMOS FinFET technology  (etal., 2017) 

(Christophe Erdmann et al., 2017). 

In the RFSoC this fusion allows the mixed signal convertors to be tightly coupled with quad core Arm 

A53 64-bit processors, Arm R5 32-bit real time processors and High-Performance Programmable 

Logic which includes hard macro Soft Decision Forward Error Correction cores. 

 

RFSoC Context Diagram 

To the system developer such tightly coupled integration multi giga-sample sample RF Data 

Convertors with processing offers several benefits 

1. Reduced PCB Complexity – Integrating the RF converters, reduces significantly the tracking 

required between the digital processing and the converters. This reduction allows for not 

only a simpler routing but also a more compact solution in many cases a RFSoC solution can 

be 50 to 75% smaller. This reduction in size is critical when developing RF Array solutions 

such as MIMO Antenna where module spacing needs to be of the of the order of λ/2 to 

prevent interference when formed into sub arrays 
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2. Simplified Clocking Architecture – The majority of the clocking network is within the RFSoC 

this simplifies the clock distribution network, reducing the area, cost and power of the RF 

clocking solution.  

 

3. Reduced Power – An integrated solution requires fewer high-speed IO as such the power 

required to drive those transceivers is saved. Power savings of up to 50% are achievable 

using direct sampling RFSoC solution compared to a discrete implementation.  

 

4. Flexible RF front end – The high sampling rate of the RF Convertors the RFSoC allows direct 

RF sampling. Direct sampling offers several advantages, not only a component count 

reduction. But also, as the solution is implemented digitally within the programmable logic it 

allows adaption as algorithms, waveforms and standards evolve over the years enabling 

updates in the field once deployed.  

 
Direct Sampling Vs IF Conversion  

5. Interfacing – To interface with the outside world, the RFSoC PS provides support for multiple 

industry standard interfaces such as GigE, SATA, USB3, PCIe, CAN, I2C and SPI etc. This allows 

the RF front-end, signal processing, control and communication to be implemented within a 

single device.  

 

6. Security – Many solutions for the RFSoC are remotely deployed or in critical applications as 

such security of the solution is critical. To support secure solutions the RFSoC enables both 

secure configurations using AES256 encryption and run time antitamper and security 

features using the Sysmon and SECMON IP.  

These factors enable the RFSoC to be used to create solutions which offer an optimal SWaP-C 

implementation for a range of applications from 5G to Industrial Internet of Things, Software 

Defined Radio, RADAR, Test and Measure, DOCSIS and Satellite Ground Stations.  

RF Data Convertors 
At the heart of the RFSoC is the RF Data Converter, to support the processing bandwidth necessary 

to effectively use the converters the RF Data Converter is located within the programmable logic.  

The RF ADC are capable of sampling rates at up to 5 GSPS, while the RF DAC can achieve sampling 

rates at up to 10 GSPS.  



Of course, it is not only the ADC or DAC converters which are included within the RF Data Converter 

element but also includes Phase Locked Loops, Complex Mixers, Decimators and Interpolators, 

Quadrature Modulation Correction along with support for the synchronisation across devices. 

 

ADC Signal Path 

 

DAC Signal Path 

When it comes to performance of the RF DAC and RF ADC, they are comparable to those offered by 

discrete solutions offering:-  

• ADC Full Power Bandwidth – 4 GHz  

• ADC 2 GSPS – Fin 3.5 GHz Spurious Free Dynamic Range (SFDR) is 80 dBC  

• ADC 4 GSPS – Fin 3.5 GHz Spurious Free Dynamic Range (SFDR) is 72 dBC 

• Cross Talk between ADC channels -70 dBC 

• DAC Full Power Bandwidth – 4 GHz 

• DAC 6.5 GSPS – Fout 3.5 GHz Spurious Free Dynamic Range is 72 dBC with a 20 mA output 

drive.  

• Cross Talk between DAC channels is -70 dBC 

Spectral Plots of RF ADC and RF DAC performance below show the RF DAC output and RF ADC input 

using the RFSoC development board the ZCU111. The RF DAC was configured to generate a sine 

wave at 1350 MHz.  The RF ADC samples this and uses the mixer and decimation to place the output 

sine wave at 150 MHz.  



 

RF DAC Output 

 

 

RF ADC Input 



Configuring the RF Data converter for an application can be achieved using traditional development 

tools including Vivado and SDSoC. The RFSoC can also be programmed using System Generator 

which supports Matlab and Simulink based approaches. 

PYNQ Framework  
PYNQ (www.Pynq.io) is an open source project started by Xilinx, which fuses the productivity of 

Python with the acceleration provided by programmable logic within the Zynq / Zynq MPSoC / Zynq 

RFSoC. 

The tight coupling of Processing System (PS) and Programmable Logic (PL) in the Zynq / Zynq MPSoC 

/ Zynq RFSoC allows for the creation of systems that are more responsive, deterministic, and power 

efficient when compared to traditional CPU or GPU-based applications. This increase in performance 

is due to the ability to leverage the parallel nature of the programmable logic to move accelerate the 

application from the sequential software world to the parallel world enabled by programmable logic. 

However, developing the programmable logic solution requires advanced digital design skills limiting 

accessibility to software developers. 

The PYNQ framework really is game changer in the programmable logic world. It enables the 

performance of programmable logic provided by Xilinx heterogeneous SoCs to be leveraged using 

Python one of the hottest programming languages, without the need to learn the digital design skills. 

PYNQ framework uses iPython and Juypter notebooks enabling a browser-based development flow. 

To be able to run the iPython kernel, and Jupyter webserver PYNQ images run an Ubuntu-based 

Linux image containing Ubuntu’s root file system, package manager and repositories on the 

processing system. 

The PYNQ build flow itself is based upon the standard Xilinx PetaLinux build flow. This allows the 

PYNQ build to access all the Xilinx Kernel patches, board support packages, and crucially add in new 

drivers for processor system / programmable logic interfacing. 

 

 

 

PYNQ framework stack 



To transfer data between IP within the programmable logic and Jupyter notebooks, C-based drivers 

associated with the IP are encased in Python wrappers. 

Communication between the processor system and the programmable logic depends on the 

interface used. In our PYNQ implementations, there are five different PS / PL interfaces which are 

used: 

1. Bitstream — This configures the programmable logic for the desired application. In the PYNQ 

framework, the xdevcfg driver is used. 

2. GPIO — This provides simple IO in both directions. In the PYNQ framework, this is supported 

by the sysgpio driver. 

3.  Interrupts — Support interrupt generation from the programmable logic to the processing 

system. In the PYNQ framework, this is supported by the Userspace IO driver. 

4. Master AXI Interfaces — These are used to transfer data between the PS to the PL when the 

PS is the initiator of the transaction. The PYNQ framework uses devmem when employing 

master AXI interface. 

5. Slave AXI Interfaces — These are used to transfer data between the PS and PL when the PL is 

the initiator of the transaction. The PYNQ framework uses xlnk to enable these transfers. 

 

Interfacing between the PS and the PL in the PYNQ framework 

The PYNQ framework builds upon these Linux Kernel drivers and offers a range of PYNQ specific 

APIs, which provide specific PYNQ libraries and drivers. These APIs let the Jupyter notebooks bridge 

the gap, accessing the programmable logic. 

As many of the applications require transfer of large quantities of data between the PS and PL, these 

APIs include support for Direct Memory Access (DMA) using the xlnk driver. 



 

PYNQ Framework 

As developers, we leverage the PYNQ framework by connecting to the Jupyter server over a wired 

ethernet link and developing our application in a browser-based interface. 

 

PYNQ overlays for the RFSoC therefore enable rapid prototyping of solutions using python libraries 

and frameworks. To support the RF Data Convertor within the RFSoC the PYNQ image contains 

additional libraries  

• xrfdc: A Python driver for the RF data converters. 

• xrfclk: A Python driver for the onboard clock synthesizers. 

Of course, to get the best from the RFSoC PYNQ implementation, overlays are needed for the 

programmable logic which use the RF Data Convertor. One of the important aspects of PYNQ is the 

open source community who provide overlays including for the RFSoC. Using the open source 

community and sharing overlays in this manner opens the RF Data Convertor and programmable 

logic up to a wider range of developers than traditionally is the case.  

One example overlay available for the PYNQ RFSoC Image is the University of Strathclyde QPSK 

overlay which demonstrates QPSK modulation.  



 

QPSK Example 

Conclusion  
The RFSoC is a game changing device which enables system developers to address the increasing 

performance and SWaP-C challenges solutions face. Combining this capability, the productivity 

increases which comes when we use Python enables rapid application development and 

prototyping, further accelerating development. 
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