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Power Handling of Strongly-Coupled Striplines 

Abstract 

Strong coupling in stripline is readily achieved by the use of partial to complete broadside coupling 
configuration.  The requirement for high even mode impedance leads to narrow lines, when 
compared with attached transmission lines, and hence to reduced RF current for acceptable 
temperature rises.  The presence of the coupled line, which also carries RF power, adds extra 
thermal load. 

Thermal analysis may be performed, by way of analogy to electrical circuits, to predict maximum 
power handling in a given configuration.  The example of a 2.45GHz equal division coupler 
demonstrates power limitation due to the coupler is considerably lower than the 50Ω lines that 
connect to it. 

It is shown too that the contribution of dielectric loss is diminished in the coupled line. 

Electrical and Thermal Analogy 

The analogy between electrical and thermal analysis can be demonstrated by reference to Fig.1, an 
analytical representation of a single stripline, in which the red lines denote the stripline conductors, 
the white space is the dielectric, the blue lines equi-potentials and the black lines flux. 

In the synthesis of striplines, calculators determine electrical parameters such as impedance and 
propagation constant, by considering the blue lines as electrical equi-potentials and the black lines 
as electrical flux.  The same field patterns arise if the white space becomes a conductive medium, in 
which case the blue lines remain as electrical equi-potentials, but the black lines then become 
current flux. 

The same pattern arises if the structure is considered as a thermal model, where the centre line is 
held at a different temperature to the ground lines.  In this case, the blue lines represent isotherms 
and the black lines heat flux.  We may use this analogy and the existence of stripline calculators as a 
means of analysing temperature effects in striplines. 

 

Fig. 1. Field Patterns in Cross-Section of Stripline 

In order to demonstrate the analogy, consider first a primitive parallel plate arrangement.  From the 
fundamental definition of capacitance, we have the formula: 
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 𝐶 = #$%
&

 (1) 

where C is the capacitance, ε is the permittivity, w the width, l the length and d the distance 
between the plates. 

We may also analyse this simple structure in relation to its thermal properties, where one plate is 
held at a different temperature to the other.  The thermal conductance of the structure is given by: 

 𝐾 = ($%
&

 (2) 

where K is the thermal conductance, κ is the thermal conductivity of the medium, w, l and d as 
before. 

Combining (1) and (2) we have: 
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In (3), the quantity wl/d is a “shape factor”, valid for the parallel plate structure.  Other “shape 
factors” include: 

 +,%

%-./01
 Coaxial line, b, a outer and inner conductor radii respectively 

 ,%
23456789 +:; < Two wire line, D centre separation and a conductor radius 

The scope of analytic solutions in conjunction with useful structures is very limited.  Even the parallel 
plate solution is of only limited use, as it fails to consider fringing fields.  A pair of parallel cylinders, 
one of which may be inside the other, and one of which may be a flat plane in the limiting case, may 
be analysed analytically as an extension of the coaxial and two-wire line analysis.  Approximate 
techniques have to be used otherwise, including the analysis of striplines. 

The analysis has assumed an homogeneous medium in which the fields are present.  This 
assumption is valid for stripline.  Inhomogeneous media structures might also be handled, but won’t 
be considered in this paper. 

For our purposes, we are interested in solving a 2D problem, as depicted in Fig.1.  We are therefore 
interested in properties per unit length.  Choosing the l subscript to denote per unit length 
quantities, (3) may be adapted to: 
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Although the capacitance per unit length of a stripline may be generated by synthesis software, 
characteristic impedance is its primary output.  We have from transmission line theory: 

 𝐶% =
>

?@AB
= √#D

2AE
 F/m (5) 

where vp is the phase velocity, Zo the characteristic impedance, c the free space velocity of 
electromagnetic propagation and εr the relative dielectric constant of the medium.  Combining (4) 
and (5) gives us the expression for thermal conductance per unit length as: 

 𝐾% =
(√#D
#2AB

= (
#B√#D2AE

 W/°Cm (6) 

Note that this formula is valid for any TEM mode structure, not exclusively striplines. 
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Thermal Sources 

Having determined an expression for the thermal conductance, we now need to determine the loss 
that gives rise to a temperature increase.  There are two sources we are concerned with in 
connection with striplines.  The first is conductor loss (assumed copper) and the other is dielectric 
loss.  Their treatment varies because the first occurs at the boundary and the second within the 
medium. 

Consider first the copper resistance loss.  Where it is a small component of the propagation 
constant, it may be approximated by: 

 𝑄) = 2𝛼2𝑃J (7) 

where QC is the dissipation due to copper loss, αc the copper loss component of propagation 
constant and Pi the incident power. 

Copper loss in stripline calculators is usually expressed in dB/m, rather than nepers/m, and one may 
be calculated from the other by: 

 𝛼2 =
KL
+M
𝑙𝑛10 (8) 

where Lc is copper loss in dB/m.  Note that copper loss is a strong function of surface roughness, 
varying by a factor of 2 from very smooth to very rough.  It also increases with temperature at a rate 
of 0.393% per °C, so it is necessary to use a figure relating to the temperature of operation.  Note 
too that copper loss derived from calculators includes a component due to ground plane.  For our 
analysis, we may assume the ground plane is directly cooled and only the temperature rise of the 
centre conductor matters.  Analysis based on calculated total copper loss will therefore lead to a 
pessimistic power handling figure.  As stripline transmission lines are relatively wide compared with 
coupled lines, the error is greater for the transmission line. 

With regard to the dielectric loss, a similar analysis gives rise to: 

 𝑄9 = 2𝛼&𝑃J (9) 

 𝛼& =
KR
+M
𝑙𝑛10 (10) 

In the above, QD is the dissipation per unit length due to dielectric loss, αd the dielectric loss 
component of propagation constant and Ld the dielectric loss per unit length expressed in dB/m.  
Unlike resistive loss, which includes a complicated function of surface roughness, dielectric loss can 
be readily evaluated from the dielectric loss tangent.  We have from transmission line theory: 

 𝛼& ≈
T=AE
+

 (11) 

The parallel conductance parameter can be evaluated from the loss tangent by: 

 𝐺% = 𝜔𝐶%𝑡𝑎𝑛𝛿 (12) 

As dielectric loss is distributed through the medium, its contribution to centre conductor 
temperature is lower than it would be had the loss been concentrated in the centre conductor.  To 
understand its effect, consider once again the field patterns in stripline, but adding a couple of loss 
sources, as shown in Fig.2. 
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Fig.2 Representation of Dielectric Loss 

In addition to the previous potential and flux lines, two bands of loss are shown in orange.  These are 
supposed to occupy an equal elemental voltage.  The same flux passes through both bands.  As loss 
is proportional to potential multiplied by flux, the same dissipation occurs in both bands.  One band 
is placed at a mean potential of V1 and the other at Vc – V1.  The temperature rise to the Vc – V1 
potential is augmented by the additional temperature rise from ground to the V1 potential.  As the 
thermal resistance from the V1 potential to ground is the same as the thermal resistance from the 
centre conductor to Vc – V1 potential, the aggregate of both loss sources is the same as if a loss equal 
to one source was placed at the centre conductor. 

Now, adding source pairs covering the whole dielectric loss, the result is equal to half the total loss if 
it was applied to the centre conductor.  This is a consequence of the equivalence of the electric and 
thermal model.  An alternative way to express it is to suppose that the dielectric loss is generated at 
the mid- potential.  This is valid for conductor temperature calculations, but not the temperature 
distribution of the medium. 

The two contributions may be combined to determine the centre conductor temperature rise: 

 𝛥𝑇 =
\]^

7
_\`
*=

 (13) 

Combining (6-10) an expression for power rating can be determined: 

 𝑃J =
>M(ab

#E√#D2AE%->M8KL^
7
_KR<

 

 = c+dc(ab
√#DAE(+KL^KR)

 W (14) 

Example 1 

Determine the power rating of a 50Ω transmission line stripline where ground plane spacing is 
6.86mm, at 2.45GHz, where conductor temperature is 100°C above a 40°C case temperature. 

The material properties can be taken as εr = 2.2, tan δ = 0.0007, κ = 0.261W/m°C, surface roughness 
= 3μm and copper thickness = 35μm. 

Stripline synthesis yields a line width of 5.57mm and analysis then gives Lc = 0.53dB/m and Ld = 
0.23dB/m. 

V1

V -c V1

Vc



 Page 5 of 10 

Applying the formula of (14) gives a power rating of 893W. 

The above example illustrates that in most cases copper loss is greater than dielectric loss.  Copper 
loss can be further reduced by thicker substrate and a wider line, subject to wavelength constraints.  
Dielectric loss on the other hand doesn’t vary with substrate thickness.  The effect of dielectric loss is 
further reduced by its generation away from the centre line. 

Junction Cooling 

It is anticipated that the narrow lines required in strongly coupled stripline will experience higher 
temperature rises than the relatively wide connecting transmission lines.  A source of cooling in 
addition to the substrate in the transition region may come from conduction along the copper line.  
For this analysis, the electrical/thermal analogy may again be employed. 

From transmission line theory: 

 𝑍M = hi=^jkK=
T=^jk)=

 

Now, when frequency is zero, we have at DC: 

 𝑍M = hi=
T=

 (15) 

For the propagation constant: 

 𝛾 = 𝛼 + 𝑗𝛽 = p(𝑅% + 𝑗𝜔𝐿%)(𝐺% + 𝑗𝜔𝐶%) 

Once again at DC: 

 𝛼 = p𝑅%𝐺% (16) 

Transferring these results to the thermal case.  For the junction thermal resistance we get from (15): 

 𝑅stM = hiL=
*=

 (17) 

In (17), Rt50 is the thermal resistance at the junction, Rcl is the thermal resistance of the copper strip 
on its own, per unit length and Kl the thermal conductance from (6). 

The penetration of cooling effect is the reciprocal of the (16) analogy, so we have: 

 𝑑v = 1 p𝑅2%𝐾%⁄  (18) 

In (18), dp is the distance the cooling effect has dropped by a factor 1/e.  It might alternatively by 
expressed as a “half-life”, which equals 0.69 x dp. 

Example 2 

Determine the cooling effect of the transmission line of Example 1.  Use a value of 401W/m°C for 
copper conductivity. 

For the thermal resistance per unit length, use: 

 𝑅2% =
>

()xy
= >

zM>×t.td×>M6}×ct×>M6~
= 12,792°C/Wm 

From (6) we get: 
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 Kl=1.326W/m°C 

Applying (17) gives us a thermal resistance of 98.2°C/W and (18) a penetration depth of 7.7mm. 

Note that the penetration depth is only a fraction of the length of a quarter wave coupler at the 
chosen frequency of 2.45GHz, where λ/4 is 20.6mm. 

Coupling Analogy 

We now turn our attention to the analysis of couplers.  The single capacitance per unit length for a 
transmission line is replaced with an array of 3 capacitors to represent coupling.  Individually, these 
may then be transformed to the analogous thermal conductances.  After this, the effects of 
dissipation may be applied.  This is shown in Fig.3. 

 

Fig.3 Electrical to Thermal Analogy of Coupler 

Coupled transmission line theory gives us for the capacitances per unit length: 

 𝐶� =
√#D
2AB�

 (19) 

 𝐶� = √#D
+2
.AB�

_ �AE_

AE_AB�
1 (20) 

Comparing these two equations with (4-6) yields: 

 𝐾� =
(

√#D#E2AB�
 (21) 

 𝐾� = (
+√#D#E2

.AB�
_ �AE_

AE_AB�
1 (22) 

The dissipation sources represented by the Qxx quantities in Fig.3 have to be determined from a 
knowledge of the voltages and currents prevailing at the cross-section where an analysis is made.  In 
a coupler, these vary according to the position, owing to the presence of standing waves.  A 
simplification is available if the position for analysis is at the incident power end.  Here, the voltage is 
determined by the amplitude of RF voltage, and the current similarly.  Note that the copper losses 
apply at the conductors, whereas dielectric losses apply at the mid-point of the thermal 
conductances. 

It is appropriate to take the position for analysis at the incident power point, because stress is 
greatest here.  Incident voltage and current are greatest, as well as coupling line voltage and current. 

With regard to the dissipation sources, we have for resistive losses: 

Ce Ce

CmV1 V2 T1 T2

QD1 QD2

QD3QC1 QC2

Ke Ke

Km

T0
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 𝑄)> =
i=��
AE

 (23) 

 𝑄)+ =
i=�L
AE

 (24) 

Both these equations make use of the calculation of RF current in the adjoining lines.  Note that the 
resistance per unit length Rl refers to the coupled lines. 

For the dielectric losses: 

 𝑄9> = 𝐺�𝑍M𝑃J  (25) 

In (25), Ge is the loss of the even mode capacitance, given by: 

 𝐺� = 𝜔𝐶�𝑡𝑎𝑛𝛿 (26) 

Similarly for the other two dielectric loss sources: 

 𝑄9+ = 𝐺�𝑍M𝑃2  (27) 

 𝑄9c = |𝑉> − 𝑉+|+𝐺2  (28) 

 𝐺2 = 𝜔𝐶�𝑡𝑎𝑛𝛿 (29) 

The thermal network in Fig.3 may be treated in the same way as an electrical network, where the 
thermal conductances perform as electrical conductances, the dissipation sources are current 
sources and the temperatures are voltages.  Further simplification may be afforded by analysing the 
circuit at the centre frequency of operation, where V2 is in phase with V1 and given by: 

 𝑉+ = 𝑚𝑉> (30) 

m is the voltage coupling coefficient, given by: 

 𝑚 = AB�_ �AE_

AB�_ ^AE_
 (31) 

The voltage coupling coefficient can be further employed to eliminate the coupling elements: 

 )L
)�
= TL

T�
= �

>��
 (32) 

With the sources and elements all defined, conductor temperatures may be determined by solving 
the thermal network in Fig.3.  The results are: 

 𝑇> − 𝑇M = [2𝑅%(1 −𝑚 +𝑚+) + 𝐺�𝑍M+(1 + 𝑚 −𝑚+)]𝑃J 2𝑍M𝐾�⁄  (33) 

 𝑇+ − 𝑇M = [2𝑅% + (2 −𝑚)𝐺�𝑍M+]𝑚𝑃J 2𝑍M𝐾�⁄  (34) 

Example 3 

A 3dB overlay coupler centred at 2.45GHz using 6.86mm ground plane spacing and 0.508mm centre 
substrate thickness, with the same dielectric as in example 1, is predicted to require 2.81mm wide 
lines with 1.03mm offset [1]. 

Determine its power rating if the maximum temperature is limited to 140°C with a 40°C ground 
plane temperature. 

Analysis of the 2.81mm wide line indicates on its own it would have an impedance of 74Ω and 
resistive loss of 0.64dB/m.  For a 3dB coupler, Zoe = 120.7Ω and m = 0.7071.  Ge from (26) and (19) 
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works out as 4.42 x 10-4 S/m and Ke from (21) is 0.55W/m°C.  Rearranging (33) in terms of 
temperature and applying the values above gives a value of Pi = 295W. 

We may also use (34) to evaluate T2 – T0 = 88°C. 

Observe in this last example how much lower the rating for coupled power is, compared with a 
single line as determined in Example 1.  Note too there is not much difference in conductor 
temperature, even though the coupled line’s dominant resistive loss is only half that of the main 
line. 

Junction Cooling – Coupled Case 

It would be helpful in view of the high temperature potential of the coupled lines, if the main lines 
conducted some heat away.  A model for this process is shown in Fig.4.  Source temperatures Ti, Tc, 
T1 and T2 are the temperatures the input line, coupled output line, through line and coupled line 
attain respectively away from the junction.  Tt1 and Tt2 are the temperatures at the through and 
coupled line junctions respectively.  Kt50 is the reciprocal of Rt50 from (17).  It just remains to 
determine the junction thermal elements Kte and Ktm. 

 

Fig.4 Junction Cooling Model 

Kte may be readily determined in the same way as Kt50.  From (17) and applying the even mode 
quantities we have: 

 𝐾s� = h*�
iL=

 (35) 

In the case of (35), Rcl is the electrical resistance per unit length of the coupled line.  In order to 
determine Ktm, we need first to determine the odd mode thermal conductance.  Examination of Fig.3 
allows us to write: 

 𝐾3 = 𝐾� + 2𝐾�  (36) 

We may show in a similar way to (32) that: 

 𝐾� = �
>��

𝐾�  (37) 

Hence: 

T1

T2

Tt1

Tt2

Ti

Tc

Kte

Kte

Ktm

Kt50

Kt50
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 𝐾3 =
>^�
>��

𝐾�  (38) 

The odd mode junction thermal conductance is then: 

 𝐾s3 = h*B
iL=
= h>^�

>��
𝐾s�  (39) 

The mutual junction thermal conductance can then be determined: 

 𝐾s� = 7
_
(𝐾s3 − 𝐾s�) = 7

_ �h
>^�
>��

− 1�𝐾s�  (40) 

It is convenient to write: 

 𝑀 = h>^�
>��

= AB�
AB

 (41) 

Hence: 

 𝐾s� = 7
_
(𝑀 − 1)𝐾s�  (42) 

The network of Fig.4 may now be solved, substituting for Ktm using (42), giving: 

 𝑇s> =
(b�*��E^b7*��)�*��E^

7
_(�^>)*���^

7
_(bL*��E^b_*��E)(��>)*��

(*��E^�*��)(*��E^*��)
 (43) 

 𝑇s+ =
(bL*��E^b_*��)�*��E^

7
_(�^>)*���^

7
_(b�*��E^b7*��E)(��>)*��

(*��E^�*��)(*��E^*��)
 (44) 

Even and odd mode penetration depths may also be inferred.  For the even mode: 

 𝑑v� = 1 p𝑅2%𝐾�⁄  (45) 

For the odd mode: 𝑑v3 = 1 p𝑅2%𝐾3⁄ = &@�
�

 (46) 

Odd mode penetration depth is smaller than even mode, indicating the two coupling strips rapidly 
converge to their ultimate temperature difference, compared to the approach to their final 
temperature. 

Example 4 

Determine junction temperatures for the coupler analysed in Example 3, assuming the same input 
power of 295W, and the connecting transmission lines are the same as Example 2.  Normalise 
temperatures to T0 = 0. 

From Example 3, we have T1 = 100°C, T2 = 88°C.  With the lower incident power, Ti reduces in 
proportion to the value determined in Example 2, and is 33°C.  As the coupler is an equal power 
splitter, the coupled transmission line temperature becomes half of Ti or 16.5°C. 

Taking the reciprocal of (17) we get Kt50 = 0.01018W/°C. 

In order to determine Kte, the thermal resistance of the coupled line needs to be evaluated.  
Proceeding similarly to Example 2, we have: 

 𝑅2% =
>

()xy
= >

zM>×+.�>×>M6}×ct×>M6~
= 25,526°C/Wm 
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Applying (35), with Ke already determined, we get Kte = 4.653 x 10-3 W/°C.  For an equal division 
coupler, M = √2+1.  Applying (43) and (44) in turn we get: 

 Tt1 = 51.7°C Tt2 = 41.3°C 

For penetration depths, using (45) and (46) in turn we get: 

 dpe = 8.5mm dpo = 3.5mm 

The substantially cooler transmission lines are effective in reducing junction temperatures, but the 
relief is limited.  Temperature will increase away from the junction before the reduced RF amplitude 
reduces stress. 
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