
A DEPLOYED SENSOR NETWORK TO MONITOR A FLOODPLAIN

R. Roddis and E.L. Kuan
Multiple Access Communications Limited

Delta House, Chilworth Science Park
Southampton SO16 7NS

United Kingdom
Email: robert.roddis@macltd.com

Fax: +44 (0)23 8076 0602
http://www.macltd.com

1 Introduction
One project employing sensor networks is the FloodNet project [1], which involves a number
of organisations and is partially funded by the Department of Trade and Industry (DTI) Next
Wave Technologies and Markets programme [2]. The organisations involved in this project
include Multiple Access Communications Limited (MAC Ltd), IBM, Halcrow, Associated
British Ports and the University of Southampton. In the following sections, we will discuss
some of the issues related to the deployment of this sensor network, its purpose and some of
the algorithms that have been developed as a result of this project.

2 Sensor network
The FloodNet project involves the deployment of a wireless sensor network on a floodplain
in Brandy Hole on the River Crouch in the UK. The purpose of this network is to monitor the
flooding situation in the floodplain and to collect data from the flood events that occur
naturally in the area.

This sensor network consists of 12 nodes deployed over an area with the dimensions of
approximately 2 km by 1.5 km. Figure 1 shows an aerial photograph of the floodplain in
Brandy Hole and the locations of the 12 nodes are indicated by arrows.

Each node is assembled from commercial off-the-shelf (COTS) components including a
water depth sensor, a single-board computer, an IEEE 802.11b [3] wireless network interface
card, an omni-directional antenna, a solar panel and a rechargeable battery. All of the nodes
are identical in configuration except for the gateway node. The gateway node contains the
same components as an ordinary node but also has a General Packet Radio Service (GPRS)
modem that allows it to communicate with a mobile communications network. This provides
a portal for communications between the sensor network and external networks.

The water depth sensor is a piezoelectric water level pressure sensor manufactured by GE
Druck. It generates a small-signal scale voltage in proportion to the water depth at its

particular location and a sensor reading module converts this voltage to a depth value that is
stored by the processing unit. The processing unit implements various functions including
simple statistical analysis of the sensor data, and provides the networking and application
layers of the ad hoc network. The sensor data collected by the processor are stored until they
can be delivered to the gateway node at appropriate intervals. The gateway node forwards the
data gathered from all the nodes in the field to an external network for further processing by a
hydrological model and they are stored for future data mining.

Figure 1: An aerial photograph of the floodplain in Brandy Hole showing the locations of

the sensor nodes and the viable communications links between them.

As these nodes are located in a remote and largely inaccessible area, the nodes are powered
by solar energy using the solar panel and the rechargeable battery within the node. The one
exception is the gateway node that is mains powered. This node is considered the most
critical node within the network and it is important that it is not subjected to the vagaries of
solar energy and is able to remain switched on all of the time.

Sensor nodes communicate with each other by wireless means, using the IEEE 802.11b
wireless technology. The deployed network has typical inter-nodal distances of 400m, and the
furthest reliable communications range we have achieved in the field is about 600m, therefore
nodes at the edges of the network must use nodes between themselves and the gateway as
data relays when communicating with the gateway. To fulfil this requirement, the nodes form
an ad hoc network, where each node aims to form as many communications links to other
nodes in the network, where possible. The main restrictions on a viable communications link
between any two nodes is the transmit power of each node, the minimum received signal
strength and interference within the area. The nodes are configured so that they are permitted
to communicate with each other, but only the gateway node may connect to networks outside
of the sensor network, and it will not forward data packets from an external network to the
sensor network.

The IEEE 802.11b communications protocol provides communications between two
neighbouring nodes; therefore, the sensor network requires a packet routing mechanism that
enables nodes to distribute the sensor data amongst themselves and to deliver the data to the
gateway node. The dynamic source routing (DSR) protocol [4] is a well-known routing
protocol and has been implemented to provide the packet routing mechanism of the network.
The DSR algorithm is based on a working document that has been submitted to the Internet
Engineering Task Force (IETF) Mobile Ad Hoc Network (MANET) working group. The
DSR algorithm is a routing protocol for mobile ad hoc networks that enables nodes to
discover routes to other nodes within the network and to recover from broken links or node
failures. The basic DSR protocol consists of two main mechanisms, route discovery and route
maintenance. The route discovery process enables each node to discover routes for delivering
packets to destination nodes within the network, whilst the route maintenance process enables
each node to update the status of known routes and to eliminate broken routes and initiate the
discovery process when required.

Although our nodes are static within the sensor network, the topology of the network changes
over time as nodes turn on and off according to their sensor measurement reporting
requirements and remaining battery charge. This changing network topology allied to the
self-configuring and self-healing properties of the DSR algorithm implies that the nodes do
not need to be pre-configured with routes or routing tables as these are learnt through the
route discovery process. The algorithm also enables the nodes to cope with situations of node
failure or excessive interference, allowing a node to find alternative routes, when needed. In
this environment where the nodes are static, following the initial route-finding, the routing
overhead should be minimal.

3 Node architecture
The block schematic diagram of a node is presented in Figure 2. The processor board hosts
the majority of the components and the interfaces to the sensors, power supply system and
communications components. The processor board and 802.11b wireless networking adaptor
form the core of the node and is implemented as an Arm Linux-based single board computer
(SBC) with a PCMCIA wireless network card. The SBC is connected to a 256 MByte
Compact Flash (CF) memory card that provides writable data storage for the node.

The SBC used in the node has 64MBytes of RAM for working memory and 32MBytes of
FLASH RAM for persistent storage that contains the file system for the node. This SBC uses
an Intel XScale PXA250 microprocessor running at 400 MHz. At the beginning of the
project, the performance and capabilities of this device were comparable to that of a high-end
personal digital assistant (PDA) available at the time. The SBC was configured to run the
Linux kernel and use a typical embedded Linux environment.

Wireless networking was provided by the PCMCIA-based IEEE 802.11b network interface
card that used the Intersil PRISM II chipset. This chipset was well supported under Linux and
can operate in all three 802.11 modes, ie, as an access point, as an access point client, and in
ad hoc mode. Although the data requirements of the FloodNet network were quite low, of the
order of a few tens of kilobits per second, the considerably larger usable bandwidth of 11

Mbits/s offered by the IEEE 802.11b technology was particularly useful for supporting
system diagnostics and remote administration. The FloodNet applications were written to run
over an IPv4 network, therefore the choice of the lower network protocol layers did not affect
the design and implementation of these applications. Considering these requirements, the
802.11b WiFi standard was chosen primarily because of its ubiquity and the existing driver
support built into the Linux kernel.

The water depth sensor module used an RS232 serial port interface that implemented a
simple command/response sequence to perform depth readings on demand. This was later
integrated into a power monitoring microcontroller that is discussed in the next section.

In the process of deploying the sensor network, various issues were encountered. In the
following sections, we will describe some of these issues and how they were resolved.

Power Supply

Battery

Renewable
Source

802.11b
Wireless

Transceiver

Sensor

Sensor
GPRS

or
Modem

PCMC
IA

CPU
(> 200
Mips)

FLASH
RAM

(32 MBytes)

RAM
(64

MBytes)

Timer /
RTC

USB
host

Compact
FlashUSB

host
Compact

Flash

PCMCIA

PCMCIA

Watchdog

JTAG

Processor board

Power
Controller

RS232
RS232

SMBus

I2C

Figure 2: The schematic of a sensor node, where the grouping of components into units,

indicated by the dashed outlines, denotes a sub-assembly.

4 Power control
One of the main issues with a node was that of power consumption. It was recognised from
the start of the project that the power consumption of an active SBC would be considerably
higher than the average available solar power, so it was necessary for the node to conserve
battery power by running in a low power mode for the majority of the time. The SBC was
required to support a low-power sleep mode, and be able to wake itself from sleep using a
time source. Unfortunately, the sleep mode on the SBC used did not operate at a sufficiently
low power, so a power control module had to be implemented to provide a programmable
time-controlled power-switch to the SBC.

The power control module was implemented as a separate unit from the SBC and used a
microcontroller as a smart electronic switch that controlled the power supply to the SBC. The
requirement to completely shut down the SBC raised a number of problems. Firstly, the SBC
did not contain a battery-backed real time clock (RTC). Therefore, the microcontroller had to
implement one to keep time for the SBC while it was switched off. Secondly, the water depth
sensor had to be sampled at a rate higher than the maximum rate that a node could be
switched on and off without draining the battery too quickly. Thirdly, the microcontroller had
to prevent the SBC from causing a deep discharge of the lead acid battery by monitoring the
battery voltage and using this information to determine whether it was safe to turn on the
SBC, and whether it was safe to leave it on.

The main function of the power control module was to switch the SBC on at regular intervals
and switch the SBC off again until it was required. The wake and sleep cycles were
dependent on the frequency of sensor data samples required by the flood monitoring analysts.
Whilst the SBC was switched on, the recorded sensor data were collected into data packets
that were then delivered to the gateway node, which were then sent to an external database
for further processing.

Although the wake and sleep cycles were pre-determined, they were also dependent on the
available charge in the battery. At times of bad weather, especially in the winter months,
there was insufficient solar energy to charge the battery. Therefore, before switching on the
SBC, the microcontroller monitored the battery voltage in order to ascertain whether the
battery was sufficiently charged and capable of sustaining the activities required of the SBC
whilst it was switched on. A hysteresis model was used to regulate the wake and sleep cycles
of the SBC. The microcontroller continuously monitored the battery voltage. If the battery
voltage dropped below a level of v1, the SBC was switched off and would not be switched on
again until the battery voltage exceeded the level, v2, where v2 > v1.

As explained earlier, the target sampling rate of the water depth sensor was higher than the
maximum wake-sleep rate of the SBC. Therefore, the SBC could not be depended on to
obtain regular and frequent samples of the sensor data. The microcontroller was adapted to
read the voltage output of the depth sensor, convert the voltage to a sensor value and to store
the sensor data until the next wake time of the SBC for delivery to the gateway node.

5 Synchronisation
As the sensor nodes could not remain switched on all of the time, we had to ensure that the
active periods of all nodes were synchronised with each other so that there were enough
nodes switched on together to act as relay nodes for the delivery of data packets from the
edge of the network to the gateway node. Therefore, a simple synchronisation protocol was
implemented to ensure that the nodes would turn on at the same time of day. As the gateway
node was mains powered it was always in the active mode. It also had a permanent
connection to the Internet, and thus the network time protocol (NTP) was used to set its
clock. This, in turn, was used as the reference time source to set the clocks of all other
network nodes. Whenever a node connected to the gateway it would resynchronise its clock
to the gateway, and then examine its sampling manifest to determine how long it should

remain switched on for. In the initial deployment, the entire network switched on at the same
time for a period of five minutes every three hours to transmit data back to the gateway,
except at 15:00 when the entire network switched on for 30 minutes to provide a maintenance
window, and allow re-synchronisation for nodes that have lost contact with the rest of the
network.

As the non-gateway nodes were switched on and off in time with one another, a node that
could not communicate directly with the gateway would be unable to communicate with the
gateway if, while it was turned on, sufficient intermediate nodes in the routes to the gateway
remained switched off to prevent establishing any route to the gateway. This could happen,
for example, because an intermediate node was forced to remain switched off until its battery
was charged to a safe operating voltage. Therefore, it was necessary for the nodes to have a
mechanism to detect that they were out of step with the network, and then resynchronise to
the gateway node, even if the local clock within a node was reset. This was achieved as
follows.

If a node failed to connect to the gateway five times in succession, it decided that it was no
longer synchronised with the rest of the network. It would conclude that its clock was
inaccurate and enter a search mode to resynchronise with the gateway. The node achieved
resynchronisation by searching for the maintenance period, attempting to contact the gateway
every 25 minutes, and remaining switched on for 3 minutes. Figure 3 shows the timing
relationship between the normal node activity cycle (shown as a solid line) and the searching
cycle (shown as a dashed line). Because the period of the search pattern, 28 minutes, is less
than the duration of the maintenance window, 30 minutes, there would always be at least one
occurrence of a node in the search pattern turning on at the same time as the maintenance
period in the rest of the network. Once the node made contact with the gateway it reset its
clock and determined that it had successfully resynchronised with the network. Using this
simple algorithm it could take up to one day per hop from the gateway to achieve
resynchronisation.

Figure 3: The timing relationship between the resynchronisation search pattern (dashed),

in which the node is turned on for three minutes every 25 minutes, and the
normal activity scheme (solid), in which the node turns on for five minutes
every three hours, except at 15:00hrs when it remains on for 30 minutes.

0 3 6 9 12 0 15 18 21
Hours into day

Normal activity
Resynchronisation activity

6 Deployment
Choosing the network deployment sites was supported by a proprietary 802.11b WiFi
simulator that we have developed to model the 802.11b physical layer. The simulator
incorporates digital terrain maps of the deployment area and takes into account the impact of
terrain on radio propagation. This allowed us to investigate the suitability of a particular
network deployment from a communications standpoint before physically installing the
nodes.

The results from this simulator, shown in Figure 4, encouraged us to change the initial
deployment sites of the original five nodes in the first phase of deployment to improve the
available network connectivity. In Figure 4 a, the simulator predicted a unidirectional link
between Node 4 and Node 2, which would not work with the inherently bidirectional 802.11b
network protocol. This effectively made the proposed network a single line of nodes, where if
any one node failed, all nodes beyond that point would lose contact with the gateway. By re-
positioning Node 5, as shown in Figure 4 b, we re-organised the layout of the network such
that any one node could always communicate with at least two other nodes in case of failure.

Figu

7 Co
In this
sensor
River C
discuss
were im

. a) Simulation of original node

layout shows a unidirectional link
between Node 4 and Node 2
re 4: Results from the simulator showing pos
nodes.

nclusion
 paper, we have presented the issues related
network for collecting floodplain data on a
rouch in the UK. A number of issues that w

ed, including energy conservation and netw
plemented were presented.
b) Revised node layout where all
nodes have links to at least two other
nodes.
sible communication links between the

 to the deployment of a practical wireless
 tidal floodplain in Brandy Hole on the
ere encountered during deployment were
ork synchronisation. The solutions that

The convenience of using an IP network of commercial components has been offset by the
stringent demands of the power consumption of the nodes. As the SBCs did not support the
initial requirement of a low power sleep mode, we have developed an approach with a
microcontroller to control the power supply to the SBC that this has allowed us to collect
sensor data at a higher rate than the activity cycle of the SBC would otherwise allow.

As our sensor network nodes must be turned on to communicate with one another, the
activity cycles of the nodes must be synchronised to one another, and we have shown a
simple mechanism that allows a node to determine whether it is synchronised to the network
and how to regain synchronisation once it is lost.

Since the start of this project, better suited low-power SBCs that support embedded Linux are
now available to us, and we can use these to reduce the period between network activity
cycles, and therefore reduce the delay between taking a sensor reading and transmitting it to
the data consumers via the gateway node.

In the second phase of deployment, we are using SBCs that support a functioning low power
sleep mode that allows a node to turn on and off in little more than a second, rather than the
minute it takes the original SBC to power-on. With a working sleep mode, nodes can also
retain state information in memory while asleep, which allows us to pursue a data-driven
sampling scheme and synchronisation model where nodes can communicate with one-another
to determine how best to fulfil the sampling requirements of the data consumers while
maximising the available battery power in a node.

Acknowledgements
The authors thank the DTI UK for funding the NextWave Technologies and Markets
programme, their colleagues at Multiple Access Communications Ltd for their invaluable
advice and support, as well as their fellow collaborators within the FloodNet consortium.

References
[1] http://envisense.org/floodnet.htm
[2] http://www.nextwave.org.uk
[3] ANSI/IEEE Std 802.11: Wireless LAN medium access control (MAC) and physical

(PHY) layer specifications, 1999.
[4] D. B. Johnson, D. A. Maltz, Y.-C. Hu, “The dynamic source routing protocol for mobile

ad hoc networks (DSR)”, Internet Draft, MANET Working Group, draft-ietf-manet-dsr-
09.txt, April 2003, work in progress.

	Introduction
	Sensor network
	Node architecture
	Power control
	Synchronisation
	Deployment
	Conclusion

