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Abstract 
 

In this presentation we discuss memory-effects of various classes and how these can be modelled 

using a system simulator. The methodology is based on using Volterra kernels from a number of 

harmonic balance simulations or measurements of the circuit under consideration and transforming 

the kernels into discrete time-domain convolutions. The time-domain representation of the kernels 

enables a straightforward implementation in complex-envelope system simulator. Once the Volterra 

model has been constructed, the full power of the system simulator can be exploited to simulate the 

device under test using complex signals used to capture the statistics of arbitrary wide-band 

excitation, e.g. WCDMA signal readily available in the simulator. 

 

Introduction 
The design of behavioural models that incorporate both static and dynamic nonlinearities is, at 

present, a dominant topic in nonlinear circuit and system research. Many methods have been 

proposed. Some are based on established methods for nonlinear system analysis such as Volterra 

series, Wiener functionals, polyspectral models, as well as AM-AM/AM-PM (Hammerstein) 

approaches. Others are purely ad hoc, with validity established only by limited experimental testing. 

The research community has consistently shown a preference for established methods over newer 

ideas, whatever their purported benefits. Indeed, the capabilities and limitations of established 

methods are better understood than those of ad hoc ones, so models based on such methods are not 

likely to be used inappropriately. In contrast, the uncertainty of the limitations of newer approaches 

could leave the user with a nasty surprise. 

 

It appears that the research community is converging on Volterra methods as the primary tool for 

nonlinear behavioural modelling. Volterra methods can accommodate dynamic nonlinearities and 

memory effects, as well as static nonlinearities, in a very natural way [1-4]. The model proposed 

here is essentially a classical Volterra approach. Its novelty lies less in the model than in the use of a 

special method, which has been validated theoretically, for determining the time-domain kernels. 

Much of this work was performed in 2003 by Prof. J. C. Pedro of the University of Aveiro, while on 

sabbatical at AWR. The work, and the model, are described in his report [5]. The model is similar in 

many ways to an approach proposed earlier [6]. 

 

A well known limitation of Volterra analysis is its restriction to weak nonlinearities. For system 

analysis, this restriction is not as severe as it may seem, as most types of transmitter or receiver 

components are pseudo linear and thus can be modelled acceptably by Volterra methods. This 

includes such components as class-AB cellular power amplifiers, which are ideally linear, in terms 

of first-zone input and output, although a class-AB amplifier circuit itself is strongly nonlinear. 

Although amplifiers having strongly nonlinear transfer characteristics, such as GSM cellular power 

amplifiers, cannot be modelled in this manner, the kinds of results provided by a Volterra model, 

such as ACPR sidebands, are not relevant for them. In any case, strongly nonlinear amplifiers can 

be modelled acceptably in other ways. 
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VSS Model 
The model is essentially a classical implementation of what might be called a finite impulse 

response (FIR) Volterra “filter.” In this case, the output, w(t), of the modelled two-port having 

excitation s(t) is given, in general, by: 

 

 (1) 

 

where h1(τ) is the linear impulse response of the system and hn(τ1, τ2,...τn) is the nth-order 

Volterra kernel of the system. For a narrowband signal, where we are concerned only with the 

“first-zone” response (i.e., limited frequency components near the centre frequency ω0), we need 

only the linear and odd-order terms. To keep the identification problem under control, we limit 

ourselves to third order. Converting the continuous-time expression to discrete time gives the well 

known expression: 

 (2) 

 
where t, q, and qn are indices of sample points [6]. The time increment Δt is usually removed in 

normalization. Q is the number of samples over the two-sided bandwidth of the signal, giving Q 

time-domain samples in the kernel. Once h1 and h3 are known, the evaluation of this expression is 

straightforward, involving only multiplying and accumulating. The kernels h1 and h3 are determined 

from the modelled circuit’s frequency-domain responses, obtained from laboratory measurements 

or harmonic-balance simulations. The complex envelope equivalent is then generated and the kernel 

obtained by Fourier transformation. This requires a relatively large amount of data, which might 

require extensive harmonic-balance analyses or the use of a nonlinear network analyzer. The details 

of this process are the subject of the next section. 
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Model Identification 
The nonlinear transfer function Hn(ω1, ω2,...), the frequency-domain equivalent of the kernel 

hn(τ1, τ2,...), is found from responses at discrete excitation frequencies within the modelled 

component’s passband. The frequency components then are Fourier transformed to obtain a linear 

impulse-response function and a third-order Volterra kernel. For most kinds of components, a 

relatively small number of frequency samples is adequate; in a narrowband signal, we assume that 8 

or at most 16 samples over the band of interest are enough. If a fast Fourier transform (FFT) is used, 

the number of samples must be a power of two. Later in this document, however, we show that an 

FFT may not be the best way, for practical reasons, to perform the frequency-to-time conversion. 

The system of interest is shown in Figure 1.  

 

 
Figure 1: The system of interest is a narrow-band signal, such as a WCDMA waveform. This 

signal excites a two-port, typically a power amplifier resulting in a distorted waveform, which 

includes ACPR sidebands. 
 

 

 

The excitation is a narrowband signal v(t) and the output of the nonlinear block is vo(t), which 

includes both the linear response and intermodulation sidebands. In the frequency domain, the first- 

and third-order components of vo(t) are given by: 

 

 
 

 

where Vq, Vqn are excitation-voltage components and H3(ωq1, ωq2, ωq3) is the third-order 

nonlinear transfer function. Only odd-order components are needed, as only these contribute to the 

first zone response. As we are dealing with narrowband signals, even-order components are 

invariably out-of-band. Initially we obtain first- (linear) and third-order components; these are 

adequate for calculating the first set of “shoulders” for ACPR analysis. Fifth-order responses could 

be included in an analogous manner, but the measurement or identification process would become 

much greater and more time-consuming. 
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Indeed, the process need not even be as complicated as (3) seems to imply. We can take advantage 

of several facts: 

1. We need calculate only the positive-frequency components of the output signal, as we 

ultimately want only its complex-envelope representation; 

2. A large number of the terms in the multiple summation in (3) are identical and need not 

be recalculated; 

3. Not all the terms in the summation produce first-zone components, so many can be 

eliminated. Indeed, in the third-order triple summation, we need only two positive frequency 

input components and one negative-frequency. Then, (3) becomes: 

 

 

 
 

 

where the circumflex indicates that includes only a subset of the frequency components in (3).  

Three-tone analyses are not necessary to obtain every third-order term in (3). Some third-order 

products (e.g., 2ω2 – ω1 = ω2 + ω2 – ω1) are obtained by two-tone analysis of the modelled 

circuit, and other tones (e.g., ω1 = ω1 + ω1 – ω1), which occur at a fundamental frequency, can be 

obtained by a single-tone analysis. 

 

To obtain the Volterra kernels, we probe the system with a number of discrete sinusoidal 

excitations, Q, uniformly spaced across the band, and calculate or measure the output components 

at both in-band and out-of-band frequencies. The model is extracted entirely from these input/output 

measurements. The situation is illustrated in Figure 2. Note that the excitations must be non 

commensurate, so the frequency points cannot be uniformly spaced. This is essential for proper 

model identification using three-tone excitations. 

 

 
 

Figure 2: Volterra kernels are obtained by analysis at a number of discrete frequencies over the 

bandwidth of the signal. 
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Linear Transfer Function 

The linear transfer function, H1(ω), is obtained in the usual manner: 

 

 
where Vo1 is the first-order (linear) component. H1(ω) must be evaluated over all frequency sample 

points in the component’s passband. The transfer function is found either from a linear analysis of 

the circuit or from a nonlinear analysis with the signal level at least 10dB below the 1-dB 

compression point. V1 is the source voltage, not the input voltage, of the test circuit.  

 

Nonlinear Transfer Function Components Involving Single-Tone Products 

The fundamental output is: 

 

 
 

where we have employed the principle of kernel symmetry. The frequency-domain (phasor) 

component Vo3 is: 

 
 

so H3 is: 

 

 
 

In (8), Vo3 is the third-order component only; i.e., the fundamental component must be 

subtracted from the output voltage when the circuit is lightly saturated: 

 

 
 

which can be written: 
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where Vo(ω) is the total linear plus third-order output voltage at ω. V1, the source voltage, can 

always be made real in the circuit analysis, so the conjugate term in (8) is largely academic. Eq. (8) 

is evaluated at all sample frequencies over the component’s passband.  

 

Nonlinear Transfer Function Components Involving Two-Tone Products 

These products have the form 2ω1 – ω2, with ω1 ≠ ω2. Then: 

 
 

so the transfer function is: 

 

 
 

The other transfer-function components at 2ω2 – ω1 follow similarly. The other components that 

must be determined by a two-tone analysis occur at the excitation frequencies. These are: 

 

 
 

and, of course, their permutations. There are six such terms in the Volterra series for each of these, 

and it is necessary to remove the effects of the single-tone produces as well. Thus, for (13), we 

have: 

 

 
 

which is solved easily for H3(ω1, ω2, –ω2): 

 

 
 
Note that all these terms can be found from a single harmonic-balance analysis. 
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Nonlinear Transfer Function Components Involving Three-Tone Products 

These have the form ω1 + ω2 – ω3. The output voltage is:  

 
 

which gives, in a manner similar to the previous cases: 

 

 
As with the two-tone products, the three-tone excitation generates components at the excitation 

frequencies. However, the nonlinear transfer functions that create them have the forms, H3(ω1, ω2, –ω2) and similar, which are evaluated as part of the two-tone analyses. If the frequency 

spacings were uniform, it would also be possible to have a three-tone IM product coincident with an 

excitation frequency. That is, if the frequency spacing were Δω, we would have: 

 
Avoiding this possibility is an important reason for using non uniform frequency intervals. If the 

frequency intervals were non uniform, the IM frequency might be close to ω2, but not coincident 

with it. In this case it is essential that the frequency intervals be sufficiently non uniform to avoid ill 

conditioning in the harmonic-balance analysis. As with the two-tone analysis, several transfer-

function components can be found from a single three-tone analysis. 

 

Determination of the Kernels 
We need to determine the time-domain kernels suitable for use with a complex-envelope signal for 

a restricted set of responses, namely, the first-zone response. Since conventional Volterra theory is 

based on real signals, it is necessary to derive this relation from first principles. Recall that (4) gave 

the positive-frequency, first-zone components in the vicinity of the carrier frequency, ω0. It is 

relatively easy to show that the form of (4) does not change appreciably in forming the complex 

envelope components; only a shift in frequency by ω0 in all dimensions is necessary. This is 

analogous to the linear case, in which the complex envelope signal is given merely by frequency-

shifting its positive-frequency spectrum. Specifically, the third order response in terms of the 

complex envelope, v˜o3(t) , is: 

 

 
 

where the ωqn are now baseband frequency components, the tilde indicates complex-envelope 

quantities, and: 
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The excitation voltages are: 

 

 
 

where v˜n(τ)  is the complex-envelope representation of the excitation signal. Substituting (22) 

into (20) and applying the change of variables: 

 

 
gives, finally: 

 

 
 

By inspection, the time-domain kernel is: 

 

 
 

As expected, the time-domain kernel is a kind of truncated three-dimensional discrete Fourier 

transform of the frequency-domain data. This could be calculated by a fast Fourier transform (FFT); 

however, there are some good reasons not to do this: 

 

1. The frequencies used in the harmonic-balance analysis would have to correspond to the 

time-sample rate and sequence length used in the system analysis. For various reasons, 

the user might want to use a different rate or sequence length. 

2. The frequencies must also be non commensurate, so the frequency steps across the band 

must be non uniform. Otherwise, the extraction of the transfer function becomes quite a 

bit more difficult, perhaps impossible. This probably would not work with an FFT. 

3. It is desirable for the user to be able to change the time sampling without having to 

perform a new harmonic-balance analysis. To do this, some kind of interpolation would 

be necessary. With a three-dimensional FFT, it would be necessary first to perform a 

three-dimensional interpolation in the frequency domain, or, perhaps, to perform the 

interpolation in the time domain after generating the time-domain kernel. This is likely 

to be a computationally costly process, and could introduce artefacts. 

4. In some cases it may be desirable to have non uniform sampling in the frequency 

domain. This is particularly the case when long-term memory in power amplifiers must 

be simulated. Users might also want a number of sample points that is not restricted, as 

in FFTs, to a power of 2. 
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Another approach is to calculate h 3(α1, α2, α3) in a “brute force” manner; that is, through 

the multiple summations indicated in (25). This is computationally more costly than an FFT, but the 

computation time is undoubtedly small compared to the harmonic-balance analyses. As a major 

advantage, however, it provides a straightforward method for interpolation. The errors introduced 

by Fourier interpolation are well known (e.g., Gibbs effect) and should not be a serious problem in 

the smoothly varying transfer functions we expect. If the transfer function includes significant poles 

close to the passband, as might occur in circuits that have significant filtering, artefacts may appear. 

These probably can be avoided by decreasing the frequency domain sampling interval, or, better, 

placing the filters in the system model instead of the circuit. The only remaining important 

restriction is that some ωqn must equal ω0. This is not a terribly restrictive requirement. 

 

To ease the evaluation, one can write (25) as:  

 
Where: 

 

 
 

Then, since h 3 (α1 α2 α3)  = h 3(α2,α1,α3) one need only evaluate α2 ≥ α1 and fill in the 

values for α2 < α1. 

 

It is interesting to note that the expression (25) is much simpler than those in the classical treatise by 

Benedetto et al. [8]. In the latter, the time-domain complex-envelope kernel is derived directly from 

a kernel representing real signals. In the above derivation, the conversion from real to complex-

envelope form is performed in the frequency domain, so the complex-envelope calculation has the 

same form as for a real signal. This should make calculations using this model in VSS simpler and 

faster. 

 

Calculation Process in VSS 
Sampling Rates 

In VSS, the sampling rate, _DRATE, must be set to at least 2B, where B is the two-sided bandwidth 

of the undistorted input signal. This is double the Nyquist rate based on the input bandwidth, but is 

necessary to resolve the third-order output IM products, which extend over twice the input 

bandwidth. Similarly, if the input band is divided into Q frequency points for the harmonic-balance 

analysis, the oversampling rate, _SMPSYM, ideally should be 2Q. In practice, the frequency 

resolution of the analysis may differ from that used in the harmonic balance analysis. If this 

resolution is Δf, the time window for each dimension of h 3 (α1, α2, α3) must be 1/Δf. The 

maximum time interval between samples is 1/2B, so at least (1/Δf)/(1/2B) = 2B/Δf time samples, 

in each dimension, are needed. Another criterion affecting sampling rates is the need to resolve 

long-term memory effects. If the characteristic time for memory effects (e.g., a thermal time 

constant) is T, each dimension of h 3 (α1, α2, α3) must be at least this long. Thus, the window 

is T and the minimum number of samples is 2BT. In this case, however, the harmonic-balance  
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analyses must include adequate low-frequency components, so that the long-term effects are 

included in the time-domain kernel. This requires, in turn, analysis at sideband frequencies on the 

order of 1/T. It should be noted that the complete modelling of memory effects is probably more 

complex than a first-order/third-order analysis. It is possible that certain effects, especially bias-

circuit phenomena, require a second-order component to the analysis, and perhaps even greater 

orders than third may be necessary as well. Lacking a general theory of such phenomena, it is 

difficult to determine, with any precision, what is needed in such a model. 

 

Calculation of the Output Waveform 

The output consists of one- and three-dimensional convolutions given by (2). Evaluating these is 

simply a matter of going through the indicated summations. There is probably no simpler way to do 

it. 
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