
 Page 1 of 10

Measurement Automation using Python
Dr. Richard G. Ranson, Radio System Design Ltd.

Abstract

In this paper and the accompanying presentation, python will be
demonstrated as a rapid development programming environment for
measurement automation using the GPIB interface common on many
instruments. The free python language, a low cost USB to GPIB interface and
a basic driver written in python allows live instrument control from a
command shell. To illustrate the power and utility of this approach, a
demonstration will fetch array data from a network analyser, then use
standard libraries to manipulate and plot the results. Finally to show the
extendibility of this idea, the paper presents a python based graphical user
interface (GUI) to an HP8753 network analyser for plot capture and storage.
The concepts demonstrated are very cost effective, highly productive and
ideally suited to small and medium sized enterprises.

Introduction

Python is a modern, cross platform programming language, originally aimed
at scripting, but has now matured into a full featured language. There are
modern graphical user interface development tools and an extensive set of
mature libraries to enable quick and comprehensive solutions to a wide range
of applications. Python and the associated extensive set of tools
demonstrated in this paper are also free under the GNU GPLv3 license.

The core Python interpreter and fundamental libraries are available from [1].
However this paper recommends and uses a distribution called Pythonxy [8]
because it includes a number of stable and important extensions. In
particular it includes the IPython command interface, specifically targeted at
interactive use and the ‘big three’ scientific extensions libraries (scipy, numpy
and matplotlib) which provide a wealth of established scientific data
structures and computational methods. This combination provides a Matlab
like environment for scientific calculation and data visualisation. The
distribution also includes Spyder a program development environment and Qt
Designer which is used to create GUI applications.

This paper forms the background for the conference presentation that will
include interactive use of the python tools, with the commands and results
shown as figures in the text.

Python, the Very Basics

Python is an interpreted language, reminiscent of HP Basic, but object
oriented with a sophisticated and extendible class hierarchy. It is unusual in
that it is case sensitive and has mandatory tab indenting for code blocks such
as those used in loops and conditional statements. Once that is mastered,
much will be familiar those that have experience with the basic, pascal, c etc

 Page 2 of 10

family of computer languages. One bonus of advantage to electrical
engineering is a built in class for complex numbers with a library for the
associated functions and operators. See appendix for a little more.

In operation, the interpreter produces a byte code, intermediary file which is
compiled only once and enhances the run-time performance. Even so, for
applications like instrument control, where speed is often limited by the
nature of the measurement or operator interaction, the run-time speed of the
python application is rarely significant.

The command shell, IPythyon, is included in the Pythonxy distribution [8] and
is ideal for demonstrating capabilities as well as running code snippets to test
segments prior to adoption into an application under development. The shell
can be used to demonstrate basic features, but note that it also loads other
libraries to provide large string, numerical arrays and matrix functionality in
an interactive environment similar to Matlab. Some of this will be
demonstrated in the interactive control section.

Figure 1, startup of the IPython shell.

The shell prompt is live allowing interaction with variables and data as well as
showing introspection, which allows not just the data, but the class and
underlying program functionality to be seen while classes, structures and
operators are being typed.

Instrument Control

There are several options for PC control of GPIB instruments from vendors
such as Agilent and National instruments. In this work, a low cost alternative,

shown in Figure 2, from Prologix has
been used. It operates rather like an old
serial modem, with a number of device
specific commands prefixed with ‘++’ and
all other communications being
essentially pass through from the PC to
the instrument and back again. This is a

Figure 2, USB to GPIB Adaptor.

 Page 3 of 10

very simple device to understand and work with. It does contains some
specific internal registers to control data flow, end of message notification and
time outs, but all those details can be embedded into a driver, written in
python. Finally, since the gpib standard can interface with several instruments
on the same bus, but only communicate with one at a time, the most
common register to use and understand sets of the address of the instrument
to be controlled.

The basic setup for the instrument and controller is shown in Figure 3.
Several instruments can be controlled from the GPIB, but in this case only one
is shown. The python modules and classed for the various interfaces are
shown on the bottom. By convention, module names are lower case and class
names use upper case for the beginning of each word (camel case).

Figure 3, demonstration test set up

Pyserial is a standard python module that provides a programming interface
to an RS232 serial port, which is this case is physically a USB port. The
module prologix encapsulates the details of the Prologix adaptor, providing a
simple interface to perform gpib commands from the computer via the serial
port. The module gpib and class GpibDevice demonstrate the essentials of
sending and receiving commands via the gpib interface, hiding the details of
the serial communications, the gpib conversion and interacting with the
instrument status register.

Interactive Session

Configuring and using the Prologix interface is simply a matter of importing
the necessary module and opening the gpib communications channel using
the machine specific ‘comm’ number for the USB port being used. (7 in this
case)

U
S

B
 8753 Controller

G
P

IB

P
ro

lo
g

ix

gpib
GpibDevice

pyserial
Serial

prologix
UsbGpib

module
Class

import prologix

ib = prologix.UsbGpib(7)

 Page 4 of 10

At this level, once the instrument address has been set, basic commands can
be sent backwards and forwards from the controller to instrument. There are
read(), write() and query() commands to accomplish that.

The command sequence shown sets
the address to 16, which is the
default for the hp8753, and then
shows commands to send data to

and get information back from the instrument. The default action of the
interpreter is to display the result of an operation, and the reply from the
query command is shown in red. The interactive nature is valuable here as it
shows that the returned data is a float formatted string in Hz.

Much can be done with this rudimentary control, but recognising that several
instruments can be controlled via the same interface, it is useful to expand
the programming ideas one more level and this is illustrated in the base class
GpibDevice.

More sophisticated classes can be
derived from this one, but an
instance of it represents one
instrument on the bus. Each
instance holds all the control

parameters that are specific to the prologix adaptor (including the address for
the instrument) so that the instance can be referred to directly, hiding all the
complications of the serial to usb to gpib interfaces.

Reverting back to the basic control using the UsbGpib instance, the command

sequence shows how to specify the
data format and then get the trace
data from the network analyser.
This data represents the fully error

corrected measurement from the active channel. It is s21 in this case, and in
the instrument format specified by ‘FORM2’. Consulting the documentation
shows that the returned result consists a header, a count of data bytes, then
4 bytes each for real and imaginary pairs of data repeated for each
measurement point.

Figure 4, hp8753 array data formatting information.

Knowing that there are 801 points in this measurement, you can easily check
that the data has been transferred from the network analyser.

The standard command len() returns the length of
an object which in this case is the number of bytes,
and that corresponds to the expected number from
the hp8753 documentation.

(header + count + n*(real + image)) = 2 + 2 +801*4*2 = 6,412.

ib.addr = 16

ib.query(‘star?’)
' 7.500000000000000E+08'

ib.write(‘form2’)
rd21 = ib.query(‘outpdata’)

import gpib

vna = gpib.GpibDevice(ib, ’hp8753’, 16)
vna.ask(‘star?’)

' 7.500000000000000E+08'

len(rd21)
6412

 Page 5 of 10

Decoding such data could be challenging, but the python module library
makes it straight forward. The module struct, provides an interface to/from
arbitrary binary or string data, mapping it into a specific data structure using
a compact descriptor string. In this case only the ‘unpack_from()’ function is
needed and used to interpret the binary array of bytes sent from the hp8753.

This function takes 2 parameters
with a third optional start value
(default=0). The first parameter is a
format string to specify how to
interpret the data provided via the

second parameter. The byte count value is a 2 byte integer after the header
and so starts at position 2. Extracting an integer required the code ‘h’ and
the only other complication is the byte order of integer. In this case it is big-
endian and the struct module handles this easily using the prefix’>’. (6408 =
801*4*2) Working interactively is a clear advantage here, because if you
don’t use the ‘>’, then the PC assumes little-endian and you can see the
wrong value extracted. (2073 in this case)

The last point is that unpack_from() always returns a tuple, even if there is
only one value, so the slice [0] is used to return the first (and only) value.

Extracting the real and imaginary data pairs is also straight forward using the
same principles. There are 801 pairs of floating point values in 4 byte
sequences, which is count/4 and a string formatting instruction can be used

to create the required format code
(‘>1602f’). In the command
sequence, left I have also shown
another useful tip; you can see the
result of an operation interactively
and then keep it because the last

result is always held in the variable ‘_’ (underscore). So assigning that to fmt
saves it for future use. After the second unpack_from() operation, the
variable d21 is a list of 1602 floating point values with the real and imaginary
parts interleaved in the list.

Once the measured data has been read and interpreted, it is then convenient
to re-arrange it into a complex number vector and this is the speciality of the
numpy module. After importing numpy, an empty array of the correct size is

created and the elegance of the slice
operator shows how the d21 list can
be re-arranged into a complex
numbered vector. The slice operation

is [start:stop:step] with blanks indicating the extremes, so the real parts are
extracted from the start to the end stepping is 2s. Similarly the imaginary
parts are from 1 to the end stepping in 2s.

from struct import unpack_from

count = unpack_from(‘>h’, rd21, 2)[0]
count
6408

import numpy as np
s21 = np.empty(len(d21)//2, ‘complex’)
s21.real, s21.imag = d21[::2], d21[1::2]

‘>{:d}f’.format(count/4)

'>1602f'
fmt = _
d21 = unpack_from(fmt, rd21, 4)

 Page 6 of 10

The last thing to illustrate is that the IPython environment also gives access
to data plotting and visualisation. It is actually via the matplotlib module, [8]
but it is imported automatically into the IPython namespace, so the
commands are available directly.

First, get the start and stop
frequencies from the network
analyser, remembering that the
result is a float formatted string in
Hz. Then, using numpy, create a
frequency vector to correspond to
the measure data. Next, form the
magnitude squared values for s21
from the real and imaginary parts.
Finally plot the values to see the
results.

There are other plot options,
including creating a separate figure
that can then be annotated with axis
labels, titles etc. See the matplotlib
samples page to illustrate the
numerous options. [8]

Much of this should be familiar to Matlab users, which is no coincidence, but
the important point is that the instrument control is via a low cost adaptor,
and simple driver written in python, with the python language, libraries and
all other the tools free. Also, never mind debugging and single step execution
of programs, the command shell allows you to work with the variables and
data on the fly, interacting with them and developing the program steps as
you go. This is a simple, yet powerful and very productive concept.

Python GUI Applications

Finally, in order to illustrate that this concept is not limited to simple
command line ideas, Figure 6 shows a plot capture dialog that is part of an

automated test sequence for products made at Radio System Design Ltd.

The application is developed using the Qt tool set that is an established open
source, cross platform design framework. [9] There is a library of GUI
(graphical user interface) objects, called widgets that can be used to display
information and interact with the user in the familiar GUI manner. The
interface specifies ‘signals’ which are essentially screen, keyboard and mouse
events that can then be linked to code via ‘slots’ to achieve the desired
interactive effect. The plot capture example is part of a final test sequence,
making a particular device measurement and showing the result before
adding suitable information labels and saving the results in serialised product
folders for record keeping.

start = float(ib.query(‘star?’))/1e6
stop = float(ib.query(‘ stop?‘))/1e6

freq = np.linspace(start, stop, len(s21))

ms21 = 20*np.log10(abs(s21))
plot(freq, ms21)

Figure 5, inline plotting from

the IPython shell.

 Page 7 of 10

Figure 6, GUI example of a plot capture dialog.

Within this application it is worth noting another excellent example of the
power of python and the standard libraries. The plot capture data from the
hp8753, like many instruments is a standard vector graphics format called
HPGL. This was designed for HP paper plotters and is rather old with no
support in the Qt GUI framework. But there is a command line utility called
hp2xx that converts HPGL into a number of other graphics formats including
png that can be displayed in a Qt, GUI widget. The code to do this is rather
complicated because of the cumbersome interface to windows API calls, but is
sketched in Figure 7. Essentially the HPGL data read from the network
analyser via the UsbGpib instance is written to a temporary file stream
created from the python tempfile module. Then the subprocess module gives
access to the windows API, spawning a separate process to run the
hp2xx.exe file translation utility with the required command line parameters.
Then by piping the data in via the temp file and out via the stdout pipe, the
output png file format can be loaded into a Qt image widget and displayed in
the dialog as seen in Figure 6. This is a very elegant solution to help make
sure the plot looks right before saving the HPGL data and moving on to the
next measurement. The alternative, creating a dedicated HPGL command
interpreter just to display the plot on the screen would have been very
complex and time consuming.

Figure 7, outline of hpgl plot translation code.

hpgl = ib.query(‘outpplot’)
from tempfile import SpooledTemporaryFile as STF

spf =STF()
spf.write(hpgl)

import subprocess

pipe = subprocess([‘hp2xx.exe’, ‘-q’, ‘-f-‘, ‘-mpng’, ‘-c12345611’], stdin=spf,
 stdout=subprocess.PIPE, stderr=subprocess.PIPE)

spf.close()
out, err = pipe.communicate()

Optional
plot title

Automatic
serialisation

from DUT

Standardised
path and file

names for
measurement

sequences

hpgl plot

translated to
png for view

Plot is saved in
serialised

product data

folders for
future

reference

 Page 8 of 10

Conclusion

The combination of a simple USB to GPIB adaptor and Python provides a low
cost, yet highly effective tool for automated instrumentation control. The
Prologix device is easy to use with a full set of gpib compatible functions. The
Pythonxy distribution provides a fully featured programming environment free
for all use under the GNU license. The python language itself is
straightforward to learn and use as well as being cross platform, highly
extendable, object oriented, with an enthusiastic on-line support community.
The extensive libraries provide tremendous power, with many specifically for
scientific engineering.

The interpreted nature of python, with a well implemented interactive shell,
makes it possible to develop applications quickly and easily. Working with
data and objects interactively, is particularly suitable for instrumentation
automation, proving a simple and elegant way to develop code without the
labourious write, compile, run and debug cycle common to other
environments. Finally, once written, code can be wrapped into a GUI shell
using other free tools in the pythonxy distribution such as Qt Designer and
Spyder.

References

1. Core language and libraries available from www.python.org
2. Pythonxy is a distribution that installs the core with additional tools and

libraries suitable for scientific applications.
http://code.google.com/p/pythonxy/

3. On line book, Dive into Python, http://www.diveintopython.net/
4. Prologix USB to GPIB controller, see http://prologix.biz/.
5. Programmer's Guide, HP 8753D Network Analyzer, 08753-90256
6. The starting point for online documentation,

http://docs.python.org/2/index.html
7. An index to modules in the standard distribution.

http://docs.python.org/2/py-modindex.html
8. For matplotlib, see http://matplotlib.org/
9. Python Qt Class Reference

http://pyqt.sourceforge.net/Docs/PyQt4/classes.html
10.

 Page 9 of 10

Appendix

There is as wealth of information available on line to get you started with
python [6]. The GPL nature of the license seems to encourage a helpful
community of enthusiasts that are also highly knowledgeable.

This section shows some screen captures from an IPython session, just to
illustrate some of the ideas that will be used in the lecture.

Interactive session showing a complex variable z1 and

simple operation on that value.

The last result is available as the variable named ‘_’
(underscore)

The import command adds a library to the current

namespace.

cmath includes additional functionality to the existing sqrt

function for complex values.

 Figure 8, simple interactive session examples.

In python, modules are a form of library that contain code such as functions
and class definitions that encapsulate higher level concepts. The module
cmath is the complex mathematics library and is just one of numerous
modules that come with python and extend the functionality into a huge
diversity of applications.[7] All the modules in the standard distributions are
open source, thoroughly tests and highly functional. They often borrow ideas
from other programming environments, giving python a rich set of tried and
tests tools and concepts, so that is rarely necessary to re-invent a feature
from other languages.

The idea of namespace, is common concept in modern computer languages.
It is analogous to scope, from the algol, pascal world but more powerful. At a
given level of the program, the import statement makes all symbol names
(including internal import statements) from that library available for use. But
to avoid conflicts and confusion, the imported names are prefaced by the
name of the library. Hence sqrt from the cmath module is invoked with
cmath.sqrt(). Note that in this demonstration, the IPython shell imports
several modules, including cmath into its own name-space; so in this case
sqrt(z2), without the cmath, will also work, but never-the-less the example
illustrates the principle behind the import statement. There are also other
forms of the import function that will be used and explained in other
examples.

The other key ideas that will be used in the examples are the built in types
called tuple, list and dict. (dictionary). They have much in common, but are
subtly different. Lists and tuples contain an ordered list of any number of

 Page 10 of 10

items of any type; individual items are accessed by a zero based positional
index and segments are accessed by slicing. But, lists can be altered, so
elements can be over-written as well as added or removed, while tuples are
fixed once created. Dictionaries are an un-ordered list of (key, value) pairs.
The key is the index to the value and has to be unique and countable. The
value can be any type including lists and dictionaries themselves. Many
powerful concepts are based on these types. For examples, program loops
operate by iterating over every element of a list, tuple or dict; strings are
tuples of characters. Also the parameters for a function can be fixed in length
a tuple or variable via a dict, with the result from the function any of the
three.

s is a tuple of characters (zero based)

[2:8] is a slice from 2 of length (8-2)=6

While [12:] is a slice from 12 to the
end

And [-10:] is 10 from the end to the
end

[0] is the first individual item

L is a list of 3 different items

Append adds to the end

Pop() will remove an element and

return it

L is now 3 items

Multiline command example.
For loop on each element in the list l

Commands that enter a block end in :

Tab indents for all the block commands
See the result

Figure 9, tuple and list examples with slice, add and remove operations.

This is just a flavour of the essentials that will be used in the
demonstration. There is some specific syntax to learn, but once that is
grasped, most of the other ideas will be familiar to anyone with some
programming experience.

This is also only scratching the surface; the language is much more
sophisticated and powerful than these simple examples illustrate. There is
also an enormous amount of information and examples on-line as well as
many ready made solutions in the wealth of tried and tested modules and
extensions already written.

