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By Colin Warwick and Mike Mulligan, The MathWorks, Inc., 
 
 
A new generation of software tools for Model-Based Design is enabling the creation of system-level 
models that system architects can use to evaluate the RF design specification in a flexible design 
environment that allows information to flow both top down and bottom up. Before, during and after the 
circuitry for the components and modules is being designed, the same system-level model can incorporate 
ever more refined performance information in order to determine the impact on system-level 
performance. This new approach makes it possible to find and fix system-level problems much earlier in 
the design cycle, when they can be quickly and inexpensively corrected. It also lets engineers evaluate a 
wide range of alternative designs to optimize performance, cost, and power consumption. This method 
has been successful in early adoptions in, for example, wireless communication systems. 
 
Current RF design methods 
 
Today’s wireless communications systems are built by multidisciplinary teams. The overall system 
behavior is the responsibility of the system architect. Implementing each part into disparate target 
technologies, such as real-time software, digital hardware, and RF circuits, involves several specialized 
teams that include experts in signal processing, RF engineering, and other disciplines. Smooth integration 
of these teams is the key to success. 
 
In the past, the design process began with the system architecture team developing a specification that 
guided the work of the various design and implementation teams: embedded software, digital hardware, 
and analog hardware. System specifications were captured as text documents. Although these often 
"looked good on paper" they were impossible to validate. Any flaws surfaced later in the design cycle, 
when running the design in various hardware and software simulators, or, worse still, at systems 
integration and verification. At this stage problems were prohibitively expensive to correct. 
 
This approach, which worked acceptably well when systems were simpler, is rapidly becoming obsolete. 
As the complexity of RF designs increases, the complexity of specifications and the size of the teams 
required to build them are also increasing. For example, many designs are moving from digital signal 
processors (DSPs) to field programmable gate arrays (FPGAs) and application-specific integrated circuits 
(ASICs) in order to utilize parallel processing to achieve higher bit rates. The complexity of the 
specifications required to define the latest generation of products is becoming difficult or impossible to 
capture in a text document. 
 
The risk of producing a specification that cannot be implemented is becoming too great to ignore. For 
example, a 300 MHz ASIC may seem adequate "on paper." But when the design actually comes together 
it may provide nowhere near enough horsepower. The timing of an algorithm specified for one module 
may not align with the timing of an algorithm specified for another module. A succesful algorithm may 
fail when it encounters impairments caused by real-world RF nonlinearity during system integration. 
Since they involve system-level interaction, these types of problems are often impossible for individual 
design teams to detect.  
 
Without a validated executable model, problems are often not detected until all of the different modules 
can be tested together at the system integration stage, when a complete prototype is assembled. This 
approach can quickly drive up design cost because the cost of fixing a problem increases by an order of 
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magnitude as the design progresses through each successive stage. An even more serious consequence is 
the opportunity cost of being late to market. Another weakness of the standard approach is that each 
engineering group works in isolation from the others, which make it difficult to explore system-wide 
tradeoffs. For example, one group may have the opportunity to use a much less expensive RF component 
that, taken in isolation, would reduce performance slightly. What if a tiny extra expenditure on a 
sophisticated algorithm, say soft decision, could bring performance back into line? Without an overall 
system model there’s no way to find the globally optimum solution. 
 
System architects have realized that written documents are inadequate and that early system-level 
simulation is essential. Early attempts at simulation used a familiar and readily available tool: a 
procedural programming language such as C code. While C is excellent for applications programming 
and for programming embedded processors, systems architects found it to be a low productivity 
environment for system simulation. It lacks built-in constructs for concurrent algorithms and the real-time 
connection between them. This weakness is particularly obvious with frame-based multirate systems. 
There several other shortcomings: It is awkward to visualize signals. It forces you to expend energy on 
pointers and semicolons, when you'd like to be focusing on higher-level issues. There are no supported 
standard libraries of signal processing workhorses such as filters, channel models, channel coding, source 
coding etc. Finally, it isn't easy to represent both time-domain algorithms and frequency-domain RF 
behavior in the same model. This latter weakness and a proposed solution are the focus of this article.  
 
Replacing text-based programming with block diagrams 
 
Engineers continue to use procedural languages such as C or MATLAB® to simulate wireless 
communication systems. Such tools have so far proved successful in developing individual untimed 
algorithms, but don't work well as system-level design tools, because concurrent algorithms joined by 
real-time signal flows play such a major role and procedural languages lack built-in constructs for time 
and concurrency. In a mobile communication system, there are many algorithms operating at different 
rates in a base station, with more operating in the handset. At the same time the RF energy itself is 
bouncing off buildings and terrain, creating a dynamically fading channel. Realistically modeling the 
performance of an RF system under these conditions requires the ability to capture the concurrency of all 
of this mathematical behavior as well as the physical properties that also have a significant impact. 
Attempts have been made to "patch" the deficiencies. For example, SystemC provides transaction-level 
modeling constructs by adding a class library and a kernel to C++. However, these efforts fail to solve the 
basic problem, namely that it is not easy to express concurrency and real time in a text-based 
programming language. Customers tell us that Simulink® in their design flow is two to three times more 
productive than trying to coerce C code to do a task for which it wasn't designed. 
 
Block diagrams provide a natural solution. Block-diagram environments (with their built-in scheduler or 
solver) are even better, because you set up each block to register its particular sample times, input frame 
sizes, and output frame sizes with the solver, and the solver takes care of the execution sequence. Try 
doing that with a "for" loop!  
 
Model-Based Design delivers executable specification 
 
Systems architects are beginning to use Model-Based Design to create executable specifications. These 
are far superior to text-based documents because they can simulate the behavior of the proposed design. 
We can define Model-Based Design in this way: Modeling is the specification of properties of the system. 
Design consists of implementation tasks, such as partitioning, encoding the desired behavior in C and 
HDL, synthesis, compilation, and so forth. In the document-based design era, written specifications 
contained flaws that emerged only during the decoupled design phase. Much expensive rework was 
necessary. In contrast, with Model-Based Design you build an executable model, and then base your 
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design on it. The advantage is that an executable model can be validated, and a validated model makes the 
design phase much more straightforward. An ounce of prevention is worth a pound of cure. 
 
Divide between time and frequency domain 
 
System architects typically develop algorithms in the time domain which is conducive to creating signal 
flow algorithms. In contrast, RF engineers typically talk about the frequency response of the amplifiers, 
filters, mixers, and so forth in terms of network parameters as well as frequency-dependent noise and 
nonlinearity. RF engineers specify hardware, design circuits, run simulations, perform physical tests, and 
generate mountains of this data. For example, RF engineers often work with frequency-domain simulators 
such as harmonic balance circuit simulators. The output of these powerful circuit-level simulators is 
incompatible with the baseband-complex time-domain modeling methods that system architects and 
signal processing engineers use. Another source of network parameter data is the measurements gathered 
from a network analyzer. In the "natural" frequency domain format, integration of these data into a time-
domain system model for verification is difficult.  
 
Bridging the gap between time and frequency domains 
 
The new block-diagram approach can accommodate multiple domains, including signal processing and 
RF. With Model-Based Design, the RF domain is specifically tuned so you can define and simulate the 
behavior of RF components, including filters, transmission lines, amplifiers and mixers, at the system 
level. Components can be specified based on network parameters, mathematical behavior or physical 
properties. Creating and maintaining this domain-specific library in C code would take time away from 
the more productive task of using the domain for system modeling. 
 
Use of a pre-built RF domain offers major advantages. The design space can be explored rapidly by 
altering parameters or algorithms. The systems architect typically begins by modeling the design with 
perfect RF components and then adjusts the performance specifications of the components until 
performance degradation occurs. The goal is to determine what level of noise, nonlinearity, and frequency 
domain distortions it can tolerate. The environment enables visual root cause analysis and insight. For 
example, network parameters can be visualized with plots and Smith charts. In this way, the systems 
architect can generate the specification at a high level. These specifications guide the next stage: detailed 
circuit design.  
 
The RF engineer can pass back realistic data generated either by a circuit-level simulator or from test 
equipment to the systems architect in order to verify the RF design in a systems context. Again, the RF 
domain in Model-Based Design forms the bridge between the time domain tools used for signal 
processing and the frequency domain tools used by RF engineers The conversion is more sophisticated 
than a simple inverse FFT from frequency domain to time domain. Real passband frequency responses are 
converted to their complex-baseband equivalent impulse responses. This allows the simulation to step 
forward at the symbol period, rather than being bogged down by stepping at the tiny carrier wave period. 
This higher throughput is valuable because a typical system simulation requires 100 million symbols to be 
processed in order to determine bit error rate. 
 
In addition to the frequency response, noise and nonlinearity are modeled. 
 
Example: Applying Model-Based Design 
 
Figure 1 shows an end-to-end model of a wireless communications link based on the IEEE 802.11a 
wireless LAN physical layer. It includes the baseband and RF units of the transmitter and receiver as well 
as the channel model. The standard specifies the transmitter algorithm, the channel model, and the 
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receiver performance. To implement the link, the design team must design the receiver algorithms in a 
way that meets the receiver performance specification.  
 

 
 
Figure 1: End-to-end model of a wireless communications link based on the IEEE 802.11a wireless LAN 
physical layer. 
 
Figure 2 shows a more detailed view of the top-level block "OFDM Transmitter." At this level in the 
block diagram hierarchy we see the adaptive modulator block with its bank of orthogonal frequency 
division multiplexing (OFDM) modulators.  Each is designed to operate at different data rates depending 
on channel conditions, as specified in the standard.  
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Figure 2: Under the top-level OFDM Transmitter block are the signal processing blocks required to create 
the waveform specified in the standard. 
 
Returning to Figure 1, we see that after the OFDM Transmitter block is the path loss block, which models 
the signal loss between the transmitter and the receiver. In this case the WLAN channel is a static path 
loss, but a fading channel could easily be added if the project calls for it. Such a case might be a high 
mobility wireless communication project such as W-CDMA or IEEE 802.16e. 
 
After the channel model, we have the receiver in two parts: the RF section followed by the digital signal 
processing section. 
 
In this example, like most modern wireless communication systems, the RF domain co-exists with a 
substantial digital signal processing domain. The signal processing portion is realized with a mix of 
library blocks and user-defined blocks. In the signal processing section of the receiver shown in Figure 1, 
the equalizer and adaptive modulation control were created using the Embedded MATLAB Function 
block, one of several in the Simulink User-Defined Function sublibrary. 
 
Shifting focus from the signal processing to the RF domain, the RF circuit behavior of the receiver is 
modeled as a cascade of four blocks, placed between an Input Port block and an Output Port block, as 
shown in Figure 3. 
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Figure 3: Under the top-level "RF Receiver" block is a receiver model created from four component 
blocks and four interface blocks. 
 
 
The Input and Output Port blocks mark the transition from the signal processing domain (where the 
baseband in-phase and quadrature rails are represented as real and imaginary parts of a complex time-
domain signal) to the RF domain (which is specified in terms of the frequency-domain properties of 
components acting on a real passband signal). As mentioned above, in the RF domain we can use a 
mathematical transformation to transform the frequency range of interest (a band around the center 
frequency) to its baseband complex equivalent. This affords faster simulation speed. 
 
In Figure 3, the first block after the input port is the S-parameters Filter block, followed by an RF 
amplifier, mixer, and IF amplifier blocks. The amplifiers are defined by S-parameters, noise figure, and 
third-order intercept point (a simple way of expressing nonlinearity). One specifies additional parameters 
for the mixer block: phase noise, LO frequency, and so on.  Because the LO is conceptually "built-in" to 
the mixer block, only the two remaining ports (RF and IF) are depicted in Figures 3 and 4(a and b). 

 
Figure 4a. 
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Figure 4b. 
Figures 4(a and b): The mixer block actually models both a mixer and its associated local oscillator. 
 
 
These parameterized blocks serve as way to generate specifications of components yet to be built (as 
opposed to verifying specifications of existing components). In this sense they are placeholders for the to-
be-built components.  
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In our example, the simulation showed that the initial concept design introduced noise and nonlinearities 
in the front end that made it impossible to meet the 802.11a specification. The initial design provided a 
maximum of 12 to 18 MB/s throughput instead of the required 54 MB/s. This type of result provides the 
systems architect with the information that he or she needs to improve the specification. At this stage, the 
system architect typically runs a parameter sweep on the receiver components over a range of gains and 
noise figures in an effort to balance the gain produced by each stage against the noise it introduced and to 
develop a workable set of specifications for each component. This is the classic problem of optimizing the 
gain distribution. If there is too much gain early in the cascade before filtering, intermodulation products 
will limit performance. Too little gain early in the cascade and noise becomes the limiting factor. For each 
design iteration, the system architect simulated the model to calculate the receiver sensitivity, providing 
results that not only validated the specification but also helped to understand its sensitivity to various 
design parameters. In this way, the gain distribution was optimized with respect to noise and nonlinearity. 
The system architect could at this point hand off a set of specifications for each component to the RF 
team. 
 
Later in the project, the system architect may have a short list of candidate components to verify, either 
general-purpose or application-specific standard products from a semiconductor vendor's catalog or 
custom-built circuits from the RF engineering team. In this case, the general circuit element block makes 
it possible to swap out one or more placeholders at a time, and import components based on power 
sweeps of either measured data or circuit simulator runs (Figure 5). The modeling environment provides 
the ability to plot the network parameters to a polar plane or Smith chart that can be used to confirm that 
the correct data has been imported (as Figure 6 shows).  
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Figure 5: Blocks can be substituted with different blocks from the library as the design is refined. 
 
 
With this combination of real components and placeholders, we can simulate the receiver and compare its 
performance to an ideal gain block to verify its performance in terms of linearity, noise and network 
components against the system-level metrics such as throughput and bit error ratio versus path loss. 
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Figure 6: After the placeholder amplifier is replaced by a model specified by measurement data, the 
characteristics are visualized.  
 
Conclusion 
 
This example illustrates how Model-Based Design makes it possible to develop specifications in a team 
environment where they can be evaluated based on cost, performance, power consumption, and other 
objectives. The systems architect creates and communicates the RF specification in the form of a 
behavioral model that can be used to validate the specification against requirements before it is turned 
over to the RF design team. The same model is refined during the subsequent design process to 
incorporate results generated by the RF engineers who are creating the actual circuit design. The RF 
engineers pass back behavioral information from their EDA tools and test data to verify system-level 
performance early in the process. 
 
For example, the RF engineer may not be able to achieve the specification for a certain component within 
the given cost constraints. The systems architect can modify the model to use an economical, achievable 
specification, determine the impact on the system performance, and, if necessary, make compensating 
adjustments to the specifications of other components, such as using signal processing to mitigate the 
impairment. This process makes it possible to identify, diagnose, and correct system-level problems at a 
much earlier stage than is possible with a more traditional development process. The net result is that 
problems can be identified and fixed more efficiently and system-level tradeoffs can be evaluated more 
easily in order to increase performance and reduce cost. 


