

ET Envelope Path from digits to PA

Gerard Wimpenny Nujira Ltd

ARMMS Conference 19th/20th November 2012

Agenda

- Envelope Processing
 - ET PA Characterisation
 - Isogain shaping
 - CFR shaping
- Envelope Amplifier Design Requirements
 - Sources of Impairment
 - Integrated Modulator
 - Distributed Modulator

ET System Anatomy

alignment between envelope and RF paths. Most accurate / repeatable if performed in digital domain

Improved performance possible by optimising PA for ET operation

ET PA System Principles

In **compressed region** O/P power is determined by supply voltage – RF input power has little influence

In **transition region** O/P power is determined by both supply voltage and RF input power

In **linear region** O/P power is determined by RF input power – supply voltage has little influence

Envelope Processing Basics

- Swing Range
 - Optimise efficiency of combined modulator /PA
 - Prevent gross PA nonlinearity due IV curve 'knee'
- Envelope 'Shaping'
 - Control envelope bandwidth
 - Optimise efficiency
 - Can be used to linearise PA
- Timing Alignment
 - Timing error leads to 'memory effect' (AM-PM)
 - Fine adjustment necessary (~1ns)

PA Characterisation Methods

PA Characteristics must be known to determine Shaping table

Test methodology	PA current measurement	Supply impedance	Supply bandwidth requirements	ET Efficiency prediction	ET Linearity prediction	Parameters measured
Swept CW testing	Bench PSU	Low (decoupling Capacitor)	Low (Bench PSU)	Poor, due to PA die heating	Poor, due to PA die heating	Gain (AM:AM), Efficiency
Pulsed RF /DC testing	Instrumentation grade current probe, ~5 us resolution	Low (decoupling Capacitor)	Low (Bench PSU)	Good, if short pulses (~10 us, 10% duty cycle).	Fair (if device nas low AM/PM)	Gain (AM:AM), Efficiency
Dynamic supply modulation	Challenging – high BW with high common mode voltage current sense	Requires low impedance dynamic supply (no decoupling)	High (~60 MHz BW)	V. Good	V. Good (if device has low memory effects)	Gain (AM:AM), Phase (AM:PM), Efficiency
	Phase mea	surement possi	ble in principle –	but accuracy	poor due	lo phase

to heating effects and phase reference 'wander'

measurement

AM/PM Input Surfaces

Input Gain Surface

Input Phase Surface

Isogain Contours

Isogain Shaping Functions

Input Gain Surface

Isogain Shaping Functions

Useful 2D Slices - Efficiency

Output Efficiency Surface

Output Efficiency locus

2D Slices AM/AM, AM/PM

Output Gain

Output Phase

11

Predicted Performance

Predicted Efficiency = 67.7%

Waveform = HSUPA / 5.4dB PAPR Shaping = Isogain 24dB

Measured Performance

Predicted Efficiency = 67.7% Measured Efficiency = 67.6%

Waveform = HSUPA / 5.4dB PAPR Shaping = Isogain 24dB

Shaping Table based CFR

Increased Pout using CFR

Output Signal Statistics

Controlled use of CFR allows Increased mean power and efficiency for given PA device periphery

'Software Defined PA' RF Spectrum

Shaping Table based CFR allows dynamic configuration of PA's Power / ACPR / Efficiency characteristics

Agenda

- Envelope Processing
 - ET PA Characterisation
 - Isogain shaping
 - CFR shaping
- Envelope Amplifier Design Requirements
 - Sources of Impairment
 - Integrated Modulator
 - Distributed Modulator

Envelope Amplifier Requirements

High Bandwidth

(e.g 4ch WCDMA, 20MHz LTE, 2x 10MHz WiMAX)

- Envelope Bandwidth ~3x RF Bandwidth
- Cannot be achieved with 'switcher only' architecture

Low Noise / Distortion

- Required to meet ACPR specifications
 - Many factors to consider
 - Requires high Tracking Accuracy

High Efficiency

- Must consider combined PA / modulator efficiency
- Linear supply would be pointless

Power

Must maintain BW and Noise at increased power levels

ET Impairment Categories

- System (Env & RF paths)
 - RF/Env Delay match
 - RF/Env Gain match
 - PA AM/AM and AM/PM
- RF Path
 - Noise
 - Thermal
 - Quantisation
 - Linearity
 - PA Memory effects
 - Bias
 - Thermal
- Envelope Path

Envelope Path Impairments

- Shaping Accuracy
- Tracking Accuracy
 - Noise
 - DAC Quantisation
 - Env Amp Thermal
 - Switcher breakthrough
 - Linear Amp PSRR
 - Frequency Response
 - Amplitude
 - Group Delay flatness
 - Env Amp Distortion
 - Harmonic
 - Crossover
 - Env Amp to PA Interaction
 - Env Amp Output Impedance
 - PA Interconnect Impedance
 - PA Non Linear Load Impedance

Tracking Accuracy Explained

- The difference between ideal and measured supply waveform after removal of DC offset, gain and timing errors
- Analogous to EVM for modulated signals
 - Tracking error analysis is useful diagnostic tool: RMS, Peak, Spectrum

Residual modulator tracking error

Tracking Error

ทบเ้าล

Supply 'Noise' – RF Conversion

- PA in compression Supply Noise & Distortion modulates RF carrier
- PA can be considered as mixer
 - O/P spectrum is convolution of Supply and PA input Spectra
- Conversion factor (Supply Sensitivity) for noise on supply to RF sidebands is similar to ideal AM modulator (mixer)

40MHz 'test tone' added to Envelope Amplifier O/P (whilst amplifying 5MHz WCDMA signal)

Corresponding RF sidebands

Measured Supply Sensitivity

An ideal AM modulator is described by: $y(t) = [A + M\cos(\omega_m t)]\sin(\omega_c t)$

where modulation index $h = \frac{M}{A}$

This can be re-expressed in terms of carrier and LSB and USB components

$$y(t) = A\sin(\omega_c t) + R[\sin((\omega_c + \omega_m)t) + \sin((\omega_c - \omega_m)t)]$$

where for an ideal AM modulator $R = \frac{M}{2}$

Average DC drain voltage	2.62V		
Measured 40MHz injected tone level	17.3mV rms	ΔV_{rf}	
Calculated RF sideband level for ideal AM modulator	-49.6dBC		ΔV_{rf}
Measured RF sideband level	-51dBC] / rf	$\frac{\eta}{U}$
PA Supply Sensitivity (dB)	-1.4dB		V _{rf}
PA Supply Sensitivity (%)	85%]] —	ΔV_{env}

 $\frac{\Delta V_{env}}{V_{env}}$

Integrated Modulator Example -Coolteq.L

- Boost and Buck capable
 - Battery depletion resilience
 - Increased PA peak Power

- Slow switching Buck converter provides LF power
- Fast switching multilevel converter provides HF power
- Error Amplifier 'cleans up' output

Distributed Modulator Example - Coolteq.u

Conclusions

- Understanding of PA characteristics key to achieving good ET performance.
- Careful selection of shaping table contents allows optimisation key ET system performance metrics
- ET is a simple concept, but attention must be paid to multiple potential sources of impairment to realise full potential

pushing the envelope of PA efficiency