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Abstract

This paper will discuss how the manual optimizatadna high power amplifier was replaced with a yull
automated ATE. The rationale for selecting Diffei@riEvolution will be demonstrated and suitable atijee
(cost) functions explained’he development of a highly re-usable LabVIEW bagebal optimizer will be
shown and its practical applications in “real-woflgroblems demonstrated.

Introduction

When operating a multi-octave high power ampliéieor close to saturation it becomes highly nordm This
results in a significant increase in the level afrhonic products. In some extreme cases, theseoh@s can
begin to “steal” power from the fundamental casrgnce they can fall in-band.

A well understood approach to counter this effedbiterminate and ultimately cancel these harnsonicsome
way. It should be noted that this technique of eHlation is only really suitable for systems whéhe
fundamental power is fixed. If the fundamental powaries then the amplitude of the harmonics geadran
the amplifier will also vary. This results in tharimonics becoming vastly more difficult to effeetiy cancel.

When an amplifier is only operating over a reldiivearrow range of frequencies, passive componeatsbe
connected to its output to introduce the correciceling termination. However, when operating ovevider
range of frequencies these terminations must bestst] with respect to frequency to achieve thetgsea
recovery of fundamental power.

This active adjustment could be performed throughraber of different approaches:

1. Varying the termination for each harmonic, elecizally or mechanically, at the amplifiers output.
2. Artificially generating low power harmonic produdtet are injected into the amplifiers input.
3. Artificially generating high power harmonic prodsi¢that are injected into the amplifiers output.

This adjustment is a simple process for a humaretfiopn at a single frequency. In fact, we humamesrather
good at exactly this kind of “tweaking” of controfer optimization purposes. However, in a productio
environment, over many frequencies and perhapsdamahpes, this becomes a very time consuming eseerci
that would be best achieved through an AutomatetdHesipment (ATE).
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Test System Configuration

Figure 1 shows our test system configuration. Aravi@ve signal source, under computer control, ggasra
fundamental tone that drives the amplifier. Thepldfier has the ability to control the amplitude tfe
incoming fundamental tone and the amplitude/phésm dnjected ¥ harmonic tone by electronic means. The
output of the amplifier is connected to a high poweminating load via a directional coupler. Betnethe
coupled port and a power head is attached a baswlffiger. This ensures we only measure the powehé
fundamental tone and not that of any spurious ambaic products. The power meter reading is transfieto
the computer via a high speed GPIB interface.

Manual Optimization

Figure 2 shows a manual interface for optimizing thndamental and harmonic characteristics. Thiduieo
was developed for a customer as part of an earigrgéion ATE. This simple ATE allowed our customer to
manually adjust the parameters and quantify theease in power achievable across the amplifiersatipg
band.

Automatic Optimization

Our brief was to now develop an ATE that would autoaosly search a multi-dimensional problem space. It
must achieve maximum power in the fundamental taneach frequency. It should do so as quickly as
possible, whilst maintaining its reliability andpesatability. If the ATE were to incorrectly determitlee
optimal harmonic phase, for example, we could sg8gb or even total summation of the harmonickeathan
cancellation. This is far from ideal and could teBua significant reduction of power in the fumdental tone.

During our previous attendance of the April 2009MIRS conference, we had the opportunity to review th
work of Q. Lu et al. on the application of a Gengtigorithm to a patch antenna optimization probl8rm this
instance the patch dimensions (a, b) and the feau position (%, Y,) were optimized simultaneously to
achieve the best possible return loss over a rahdeequencies. Parallels between this and our awatti-
dimensional problem led us to consider using aajloptimizer as this might be a more suitable apginachan
attempting to develop our own custom algorithm.

Global Optimizer Overview
A global optimizer is a search heuristic that seakisthe best solution of an objective function rothee whole
search space. This is in contrast to a local opgmivhich is used to find and solve the nearesttisol.

For the optimizer to be truly generic, it should dmmpletely independent of the problem and onlyvweur
system as a black box with no additional “knowlédgm numerical optimization, this black box ideged to
as an objective function. The objective functionwdotypically contain a mathematical expressiort teguires
solving and would also derive a cost from the défee between the wanted result and the calculasedt.

Objective functiorF(x) = F(Xo, X1, X2)

Where: Xo, X;, X, are our parameters to be optimized.
F(x) is the cost of applying those parameters to ostesy.

In our problem, the objective function will havedh inputs (fundamental amplitude, harmonic amgditand
harmonic phase). When evaluated, the objectivetifomavill take the three input parameters and parogthe
amplitude & phase adjusters. It will then calculdie “cost” of the parameters based on the outputep
measured from the amplifier. The higher the outjuigr, the lower the cost.

Table 1. Our problem in optimization terms.
All our parameters are essentially discrete duthéouse of D/A converters
to drive the amplitude and phase adjusters:

Parameter Quantization » 12bit fundamental attenuator (0 to 4096 equals B3@ahge)

e 12hit harmonic attenuator (0 to 4096 equals >3GtiR)e)

» 12hit harmonic phase shifter (0 to 4096 equals >3@hge)
We have a parameter dependant objective functia.all the parameters
can be optimized independently.

DIERSETIWA We have three variables, therefore this is a tHieensional problem.
. There may be one or more optimal parameter set. fidrereur problem is
Modality .
multi-modal.

Parameter Dependenc%
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Time dependenc The optimum will be stationary with respect to tinadter the HPA has
P d stabilized in temperature & output power.

The measured output power will not be entirely nofsee due to
N[N quantization in the D/A converters, measuremenntizetion in the powe
meter and variation in the power head’s detectdige.

The objective function has no constraints. The patars, however, do have
hard limits.
Our objective function is essentially a black bokeneby given the threg
INCEICTIELIINYA parameter values and a fixed RF input level weutale a cost. The systems
behavior is therefore not easily computable anthiosdy not differentiable.

Constraints

The three algorithms we considered were a Genegiordhm GA), Particle Swarm OptimizatiorPEO) and
Differential Evolution DE). None of these selected algorithms require ooiblpm to be differentiable.

Genetic Algorithm Overview

GA’s are derived from our own evolutionary procesda a typical GA, a population of binary stringsilled
chromosomes), are used to encode possible solutioas optimization problem. Table 2 shows a pdssib
encoding of our candidate solutions.

The evolution usually begins with a population afidamly generated chromosomes. In each generatien, t
fitness of every chromosome in the population ial@ated. A number of chromosomes are randomly t&elec
from the current population (based on their fithesscombined and possibly randomly mutated, tonfarnew
population. This happens in much the same way asoam chromosomes are spliced and mutated during
conception. The new population is then used inntae evolution of the algorithm. It should be notkdt the
mutation processes are not annealed. This mearsughhclassic GA may find the optimum solution, the
population as a whole will never converge on tingls solution.

Table 2. The comilete chromosome strini with a tot@f 36 bits encodini; the candidate solution.

Particle Swarm Optimization

PSO was inspired by the movement and interacticswafrming animals, developed by Kennedy and Eberhart
in 1995 it was targeted at neural network trainiR&O works by allowing particles to intelligentlyowe
through a search space. Each particle has a poéitjpa velocity (v) and its own “best value found so far;)(p
parameter. The globally “best value found so far‘apseter (g) is also stored. Each particle has its velocity
updated with the following rule, once per iteration

Velocity Update Functiom; = ev; + @, rp (i — X) + @g I'q (0g — %)

Where: o is the inertial weight, encouraging the partidertaintain its present vector.
¢, is the weighting factdhat controls steering of the particle towargds p
r'p is a uniformly random number between the limit® @nd 1.
Qg4 is the weighting factdhat controls steering of the particle towargs p
r4is a uniformly random number between the limit® @nd 1.

Adjusting the three weighting factore,fp, andgg) allows PSO to be tuned to a particular problérahbuld be
noted that PSO is purely iterative and not an diaary strategy since each member of the populdities for
the entire duration of the optimization process.

Figure 3 illustrates PSO operating on a multi-mgaablem. As the optimization executes, those gasiwith
the best value found so far, attract the otherigest by way of g After a number of iterations, the particles
will swarm closer and closer together. It shoulchb&ed that convergence on the global optimumpaeged to

a local optimum, is not guaranteed due to the dmgeaature of PSO (i.e. it can become trappedorall
minimay).
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Figure 3. A sequence showing PSO converging.

Differential Evolution Overview

DE was first proposed by Price and Storn in a texinieport in 1995 as a solution to the Chebyshev
polynomial fitting problem. DE is exceptionally ga® implement, in any programming language andiden
itself to parallel processing (if the objective tion can also be evaluated in parallel).

The stages of evolving the population in DE are shawhigure 4. As with GA and PSO, we begin with a
randomly distributed population {f) of points covering the whole of the search space.
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Figure 4. A flow chart of DE in operation

We then generate three random indicgsr(and ). These are used to index our populatioggRnd select
three members (¥, X gand X, . A difference vector is then calculated betweeny&nd X, 4 (See Figure
6). That difference vector is scaled down by thediaF and transposed on to membeg gXcreating a new

member (Vg in the mutant population (). To increase DE'’s robustness, crossover is impftet based on
the crossover constant (Cr).

Figure 5 illustrates the crossover process. Foryedignension of candidate,ya uniformly random number is
generated and compared to Cr. If the generatedauis less than or equal to Cr, then the paranuéteial
vector y4is inherited from the candidatg g otherwise the parameter is inherited frogyXinally, if the trial

vector y4 has a lower objective function value thapgXthen it replaces g in the next generation of the
population (Rgx+1).

This is all that is required to implement DE.
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Figure 5. An illustration of the crossover processdr a seven dimensional vector (D=7).
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Figure 6. The three main steps of DE with crossover.
Termination

There are a number of conditions on which we caroshdo terminate an optimization process. These may
include the following common mechanisms:

agprONE

Global Optimizer Selection
Due to commercial pressures it was decided thaerdhan having to implement and test each alguritfith

A maximum number of generations (or iterations)éhbgen reached.
A satisfactory fitness level has been reached.

A maximum amount of time has elapsed.

A statistic of the population has reached a satisf level. (E.g. the population standard deviatio
User intervention.

our system, we should establish whether the pedoom of these three algorithms (GA, PSO and DE) had
already been compared. This led us to the excellelgo lecture of Thiemo Krink (University of Aarhus
Denmark)?. In the video Thiemo provides us with a basic oieawof the three algorithms and also
demonstrates their relative performance usingwleepopular benchmarking functions shown in Figuand 8.

We have summarized our findings from Thiemo’s videdable 3.

Figure 7. Rosenbrock function.

Figure 8. Schaffer F6 function.
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Table 3. Global optimizer summary.

Type Summary
* Inherently noisy - it never truly converges duecmntinued mutation. This can lead [to

unreliability in some unique problems such as tbieafer F6 test functiof.
e Can only encode binary (fixed-point) solutions witlha more complicated crossover process.
» Requires lots of parameter tuning for best perforcea

GA

e May converge on a sub-optimal solution.
PSO e Can handle floating-point candidate solutions.
» Requires lots of parameter tuning for best perforcea
* Very easy to implement.
* Very good efficiency.
» Can handle floating-point candidate solutions.
*  Very reliable with very little parameter tuning.

DE

To quote Thiemo “Differential Evolution is an increlditalgorithm for numerical optimization”. Based tive
conclusions drawn in Table 4, we determined thasB&uld be our algorithm of choice.

Existing DE Implementations

Having undertaken extensive research to sourcertekpawledge of DE, we discovered “Differential Extibn

— A Practical Approach to Global Optimization” (Ki€e, R. Storn and J. Lampineff). This book is a
comprehensive guide to implementing DE and appliting real world optimization problems. It comegjllly
recommended. Storn also maintains a website onhwiDiie source code can be downloaded in a dozenefiffe
programming languages, including LabVIEW. This virtual instrument package (VI in LabVIEW
terminology) was created by Franz Josef Ahfémnd has proven to be an excellent starting point.

B ifferential Evalution 1ol
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Figure 9. Franz's LabView DE program. Figure 10. Franz’s DE program structure

Franz's program allowed a number of purely numétiest objective functions to be optimized. Thasections
were implemented as dynamically callable “cost fioms”. Therefore the same optimization algorithould
be used to optimize different objective functiotsewhere in our ATE, without having to be modified.

The plots in Figure 9 show the population (with best vector in red) and the cost versus generatiomber.
There are also controls for the strategy, objedtinetion selection and the optimization constahtarid Cr).

1 Il
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Figure 11. Franz's Rosenbrock test function.
Note the objective test function, in Figure 11, bas/ one input (an array of double precision-flogtpoint
controls containing the parameter values) and glesioutput (a double-precision floating point iratir
containing the cost of those parameters). Thisis for purely numerical problems, but makes intimgowith
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systems in the outside world difficult. This mearswould have to modify the algorithm each time wshvio
communicate with a difference DUT or piece of tegtipment.

Modeling

To gain some confidence in DE, with our particulatimfzation problem, it was decided we should create
model of our systems expected characteristics. Whis achieved with a simple equation in LabVIEW and i
plotted in Figure 7. The whiter the regions ongh&ace indicate higher fundamental output power.
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Figure 12. A model of our search space.

=

We expected the fundamental output power to peakrticular harmonic phase (due to cancellatith®n

180 degrees later we expect that power to be ahanom (due to summation). We also expected thathe
optimal phase, the fundamental power would increasee increase the harmonic level up until a poimtre

we started to produce a higher level harmonic it naturally generated by the amplifier. This ntede
search space was integrated in to an objectivaitmwith the following relationship:

Objective functiorF(x) = F(Xo, X1) = 1 / L(Xo, %)

Where: X, X; are the harmonic amplitude and harmonic phase peam
L(xo, X1) is the fundamental power achieved by applyingahm@Eameters to our system.

The objective function was evaluated with Franz's plagram with great success. We observed reliable
convergence within 20 generations on the optimaltiem, albeit without any quantization or measueein
noise present in our system model.

ATE Implementation
Taking Franz’'s DE implementation as a starting pamntumber of key changes were made to the optimize

1. A generic data array was flowed throughout the rilgm and into the objective function. This allowed
information key to executing each unique objecfivgction (such as GPIB connections, settling times,
power meter offsets etc) to be different from op#roization task to another without having to mgdif
the outer structure of the algorithm in any way.

Individual upper and lower limits were added focle@arameter.

The mutation process was modified such that if aatedt candidate falls outside the parameters
bounds, then a new set gf b and g indices are calculated and the mutation was refdeat

4. The ability to initialize each vector based on adseledistribution was added.

wn
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Figure 13. The initialization of our modified DE algorithm in LabVIEW.

Initializing the DE algorithm is a very simple preseas seen in Figure 13. We set the parameter sound
population size, mutation factor etc. We also “gattie generic data types as discussed earlier. Diae
algorithm can now be called with the “Evolve” opti@s many times as is required before reaching our
terminating condition.

]
wt O
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Figure 14. Our objective function in LabVIEW.

The objective function in Figure 14 shows the patansebeing indexed and then passed to the harmonic
amplitude and phase adjuster modules. After aydelatermined by the settling time, the power méser
instructed to perform a measurement. We operat@diver meter, an Agilent E4418 with E-Series sensor
200 readings/second mode. This requires some taagitiguration to achieve the best performancally

the returned measurement is calibrated by an dis&tr and the corresponding cost calculated.

Real World Verification

It was decided that the fundamental and harmoniienigation should be split in to two phases (segufé 15
and 16). This allowed us to firstly establish wpabk fundamental output power could be achievedowitthe
harmonic cancellation enabled. Then the harmonicealfation would then be enabled, optimized andpiak
fundamental output power measured again for corspari

The search space shown in Figure 16 is colour cadtbdooint at the red end of the spectrum indiaatingher
power when compared to points at the blue endegiectrum. The points coloured white indicate tiemhite
maximum power observed so far in the optimizatioocpss. Note the similarity of the search spacenwh
compared to our original model (when rotated thfo8g°).

The higher density of points around the global maxmindicates the algorithm is converging on anrogti
solution.
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Figure 15. Our fundamental optimization.

Figure 16. Our harmonic optimization.

The difference in output power, shown in Figured duite substantial with this particular HPA.

Output Power(W)

350

Figure 17. Optimized Output Power vs Frequency
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The optimal values shown in Figure 18 are very psimgi  The smooth fundamental amplitude trace tréuks
large signal gain characteristic we would expectlits type of HPA. The harmonic phase wraps cletod. If

we could correlate the D/A values back to a reasghchange, we suspect we would see another smooth

characteristic versus frequency. Finally bothhhemonic amplitude and phase seem to follow thesipective
trends right up to the point where the harmonicce#ation offers no real power increase. Beyond thi

frequency, the harmonic cancellation should beldshin the final application.

Taking in to consideration that fact that the ATE waeéndeveloped is completely automated, havingrierse
such smooth optimization characteristics is an kxteresult when compared to the results generbied

human undertaking the same exercise. We have rgptdmaskilled the optimization process, we haveoals

improved the repeatability and reliability when qmared to the original manual method.
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Figure 18. Optimized Fundamental & Harmonic Values vs Frequency

4000

3500

3000

2500

2000

D/A Value

1500

1000

Fundamental Mag.

Harmonic Mag.

—— Harmonic Phase

Frequency (Hz)

Finally the combined execution time for optimizibgth the fundamental and harmonic parameters iarshmo
Figure 19. Given the steps involved in manuallyirojzing each parameter the automated run timesaare
welcome improvement (Particularly where there ispweter inter-dependence in the system).
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Figure 19. Run Time vs Frequency
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Conclusions
Our brief of creating a fully automated ATE for tgrpose of amplifier optimization has been fulfille

The Differential Evolution global optimization algtinin has been developed in to a highly re-useable
LabVIEW module. We have now used the same modulednother optimization tasks elsewhere in the ATE.
In both cases, we needed only to develop a probjmnuific objective function.

Test results have been demonstrated showing fawogibimisation performance of a multi-octave HPA.
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